TCDB is operated by the Saier Lab Bioinformatics Group

1.A.2 The Inward Rectifier K+ Channel (IRK-C) Family

IRK or GIRK channels possess the ''minimal channel-forming structure'' with only a P domain, characteristic of the channel proteins of the VIC family (TC #1.A.1), and two flanking transmembrane spanners. They may exist in the membrane as homo- or heterooligomers. They have a greater tendency to let K flow into the cell than out. Voltage-dependence may be regulated by external K+ , by internal Mg2+ , by internal ATP and/or by G-proteins. The P domains of IRK channels exhibit limited sequence similarity to those of the VIC family. Inward rectifiers play a role in setting cellular membrane potentials, and closing of these channels upon depolarization permits the occurrence of long duration action potentials with a plateau phase. Inward rectifiers lack the intrinsic voltage sensing helices found in many VIC family channels. In a few cases, those of Kir1.1a, Kir6.1 and Kir6.2, for example, direct interaction with a member of the ABC superfamily has been proposed to confer unique functional and regulatory properties to the heteromeric complex, including sensitivity to ATP. These ATP-sensitive channels are found in many body tissues. They render channel activity responsive to the cytoplasmic ATP/ADP ratio (increased ATP/ADP closes the channel). The human SUR1 and SUR2 sulfonylurea receptors (spQ09428 and Q15527, respectively) are the ABC proteins that regulate both the Kir6.1 and Kir6.2 channels in response to ATP, and CFTR (TC #3.A.1.208.4) may regulate Kir1.1a.  There are 15 Kir (inward rectifying) channels in humans, and most are in TCDB.  Most of them are found in TCDB  in family 1.A.2.

Mutations in SUR1 are the cause of familial persistent hyperinsulinemic hypoglycemia in infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion in the pancreas. SUR1 has two nucleotide binding domains, NBD1 (binds ATP) and NBD2 (binds Mg-ADP). Both NBDs mediate nucleotide regulation of pore activity. Kir6.2, unlike many other Kir channels, cannot form plasma membrane functional channels when expressed without SUR1. This is due to a trafficking signal in SUR1 (Partridge et al., 2001). Epsilon toxin from Clostridium perfringens causes inhibition of potassium inward rectifier (Kir) channels, possibly by an indirect mechanism, in oligodendrocytes (Bossu et al. 2020).

The crystal structure (Kuo et al., 2003) and function (Enkvetchakul et al., 2004) of bacterial members of the IRK-C family have been determined. KirBac1.1, from Burkholderia pseudomallei, is 333 aas long with two N-terminal TMSs flanking a P-loop (residues 1-150), and the C-terminal half of the protein is hydrophilic. It transports monovalent cations with the selectivity: K ~ Rb ~ Cs >> Li ~ Na ~ NMGM (protonated N-methyl-D-glucamine). Activity is inhibited by Ba2* , Ca2+ and low pH (Enkvetchakul et al., 2004). 

Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) proteins and phosphoinositide signaling pathways (Doupnik 2008). These channels were the first characterized effectors of the betagamma subunits of G proteins. The crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) provided structural insight. This channel has been functionally reconstituted in planar lipid bilayers (Leal-Pinto et al. 2010). The chimera behaved like a Kir channel, displaying a requirement for PIP(2) and Mg2+-dependent inward rectification. The channel was blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins but the presence of both activated G-alpha and G-betagamma subunits was required for gating.

GIRK (Kir3) channels are members of the large family of inwardly rectifying potassium channels (Kir1-Kir7). GIRK channels, like all other Kir channels, possess an extrinsic mechanism of inward rectification involving intracellular Mg2+ and polyamines that occlude the conduction pathway at membrane potentials positive to EK. More than 20 high-resolution atomic structures containing GIRK channel cytoplasmic domains and transmembrane domains have been solved. These structures have provided valuable insight into the structural determinants of many of the properties common to all inward rectifiers, such as permeation and rectification, as well as revealing the structural bases for GIRK channel gating (Glaaser and Slesinger 2015).

GIRK channels are abundantly expressed in the heart and require that phosphatidylinositol bisphosphate (PIP2) is present so that intracellular channel-gating regulators such as Gbetagamma (Gβγ)and Na+ ions maintain the channel-open state. Li et al. 2019 determined how each regulator uses the channel domain movements to control gate transitions. Na+ controls the cytosolic gate of the channel through an anti-clockwise rotation, whereas Gbetagamma stabilizes the transmembrane gate in the open state through a rocking movement of the cytosolic domain. Both effects altered the way by which the channel interacts with PIP2 and thereby stabilized the open states of the respective gates (Li et al. 2019). 

Inwardly rectifying potassium (Kir) channels play a key role in maintaining the resting membrane potential and supporting potassium homeostasis. There are many variants of Kir channels, which are usually tetramers in which the main subunit has two trans-membrane helices attached to two N- and C-terminal cytoplasmic tails with a pore-forming loop in between that contains the selectivity filter. These channels have domains that are strongly modulated by molecules present in nutrients found in different diets, such as phosphoinositols, polyamines and Mg2+ (Ferreira et al. 2023).

The generalized transport reaction catalyzed by IRK-C family proteins is:

K+ (out) K+ (in)

This family belongs to the: VIC Superfamily.

References associated with 1.A.2 family:

Aguilar-Bryan, L., J.P. Clement IV, G. Gonzalez, K. Kunjilwar, A. Babenko, and J. Bryan. (1998). Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78: 227-245. 9457174
Alvin, Z.V., R.M. Millis, W. Hajj-Mousssa, and G.E. Haddad. (2011). ATP-Sensitive Potassium Channel Currents in Eccentrically Hypertrophied Cardiac Myocytes of Volume-Overloaded Rats. Int J. Cell Biol. 2011: 838951. 21845191
Amani, R., C.G. Borcik, N.H. Khan, D.B. Versteeg, M. Yekefallah, H.Q. Do, H.R. Coats, and B.J. Wylie. (2020). Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays. Proc. Natl. Acad. Sci. USA 117: 2938-2947. 31980523
Aréchiga-Figueroa, I.A., L.G. Marmolejo-Murillo, M. Cui, M. Delgado-Ramírez, M.A.G. van der Heyden, J.A. Sánchez-Chapula, and A.A. Rodríguez-Menchaca. (2017). High-potency block of Kir4.1 channels by pentamidine: Molecular basis. Eur J Pharmacol 815: 56-63. 28993158
Ashen, M.D., B. O’Rourke, K.A. Kluge, D.C. Johns, and G.F. Tomaselli. (1995). Inward rectifier K+ channel from human heart and brain: cloning and stable expression in a human cell line. Am. J. Physiol. 268: H506-H511. 7840300
Babenko, A.P., G. Gonzalez, and J. Bryan. (1999). Two regions of sulfonylurea receptor specify the spontaneous bursting and ATP inhibition of KATP channel isoforms. J. Biol. Chem. 274: 11587-11592. 10206966
Barbera, N., S.T. Granados, C.G. Vanoye, T.V. Abramova, D. Kulbak, S.J. Ahn, A.L. George, Jr, B.S. Akpa, and I. Levitan. (2022). Cholesterol-induced suppression of Kir2 channels is mediated by decoupling at the inter-subunit interfaces. iScience 25: 104329. 35602957
Bendahhou, S., M.R. Donaldson, N.M. Plaster, M. Tristani-Firouzi, Y.-H. Fu, and L.J. Ptácek. (2003). Defective potassium channel Kir2.1 trafficking underlies Andersen-Tawil Syndrome. J. Biol. Chem. 278: 51779-51785. 14522976
Bensassi F., Gallerne C., Sharaf El Dein O., Hajlaoui MR., Bacha H. and Lemaire C. (2012). Cell death induced by the Alternaria mycotoxin Alternariol. Toxicol In Vitro. 26(6):915-23. 22542754
Beverley, K.M., P.K. Shahi, M. Kabra, Q. Zhao, J. Heyrman, J. Steffen, and B.R. Pattnaik. (2022). Kir7.1 disease mutant T153I within the inner pore affects K+ conduction. Am. J. Physiol. Cell Physiol. [Epub: Ahead of Print] 35584325
Black, K.A., S. He, R. Jin, D.M. Miller, J.R. Bolla, O.B. Clarke, P. Johnson, M. Windley, C.J. Burns, A.P. Hill, D. Laver, C.V. Robinson, B.J. Smith, and J.M. Gulbis. (2020). A constricted opening in Kir channels does not impede potassium conduction. Nat Commun 11: 3024. 32541684
Boim, M.A., K. Ho, M.E. Shuck, M.J. Bienkowski, J.H. Block, J.L. Slightom, Y. Yang, B.M. Brenner, and S.C. Hebert. (1995). ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am. J. Physiol. 268: F1132-1140. 7611454
Bonfanti DH., Alcazar LP., Arakaki PA., Martins LT., Agustini BC., de Moraes Rego FG. and Frigeri HR. (2015). ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem. 48(7-8):476-82. 25583094
Borcik, C.G., D.B. Versteeg, R. Amani, M. Yekefallah, N.H. Khan, and B.J. Wylie. (2020). The Lipid Activation Mechanism of a Transmembrane Potassium Channel. J. Am. Chem. Soc. [Epub: Ahead of Print] 32702990
Bossu, J.L., L. Wioland, F. Doussau, P. Isope, M.R. Popoff, and B. Poulain. (2020). Epsilon Toxin from Causes Inhibition of Potassium inward Rectifier (Kir) Channels in Oligodendrocytes. Toxins (Basel) 12:. 31935961
Bukiya, A.N., S. Durdagi, S. Noskov, and A. Rosenhouse-Dantsker. (2017). Cholesterol Up-regulates Neuron.al G Protein-Gated Inwardly Rectifying Potassium (GIRK) Channel Activity in the Hippocampus. J. Biol. Chem. [Epub: Ahead of Print] 28213520
Bushman, J.D., Q. Zhou, and S.L. Shyng. (2013). A Kir6.2 Pore Mutation Causes Inactivation of ATP-Sensitive Potassium Channels by Disrupting PIP2-Dependent Gating. PLoS One 8: e63733. 23700433
Caballero, R., P. Dolz-Gaitón, R. Gómez, I. Amorós, A. Barana, M. González de la Fuente, L. Osuna, J. Duarte, A. López-Izquierdo, I. Moraleda, E. Gálvez, J.A. Sánchez-Chapula, J. Tamargo, and E. Delpón. (2010). Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. Proc. Natl. Acad. Sci. USA 107: 15631-15636. 20713726
Chang, Y.Y., B.C. Lee, Z.W. Chen, C.H. Tsai, C.C. Chang, C.W. Liao, C.T. Pan, K.Y. Peng, C.H. Chou, C.C. Lu, V.C. Wu, C.S. Hung, Y.H. Lin, and. (2023). Cardiovascular and metabolic characters of somatic mutations in primary aldosteronism. Front Endocrinol (Lausanne) 14: 1061704. 36950676
Chen, I.S., M. Tateyama, Y. Fukata, M. Uesugi, and Y. Kubo. (2017). Ivermectin activates GIRK channels in a PIP -dependent, G -independent manner and an amino acid residue at the slide helix governs the activation. J. Physiol. 595: 5895-5912. 28715108
Cheng, W.W., D. Enkvetchakul, and C.G. Nichols. (2009). KirBac1.1: it's an inward rectifying potassium channel. J Gen Physiol 133: 295-305. 19204189
Choi, S.B., J.U. Kim, H. Joo, and C.K. Min. (2010). Identification and characterization of a novel bacterial ATP-sensitive K+ channel. J Microbiol 48: 325-330. 20571950
Clement, J.P., IV, K. Kunjilwar, G. Gonzalez, M. Schwanstecher, U. Panten, L. Aguilar-Bryan, and J. Bryan. (1997). Association and stoichiometry of KATP channel subunits. Neuron 18: 827-838. 9182806
Coulson, E.J., L.M. May, S.L. Osborne, K. Reid, C.K. Underwood, F.A. Meunier, P.F. Bartlett, and P. Sah. (2008). p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 28: 315-324. 18171948
Country, M.W. and M.G. Jonz. (2021). Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (Carassius auratus). J Exp Biol 224:. 34402511
Cui, M., K. Xu, K.D. Gada, B. Shalomov, M. Ban, G.C. Eptaminitaki, T. Kawano, L.D. Plant, N. Dascal, and D.E. Logothetis. (2022). A novel small-molecule selective activator of homomeric GIRK4 channels. J. Biol. Chem. 298: 102009. 35525275
Dahlmann, A., M. Li, Z. Gao, D. McGarrigle, H. Sackin, and L.G. Palmer. (2004). Regulation of Kir channels by intracellular pH and extracellular K+: mechanisms of coupling. J Gen Physiol 123: 441-454. 15051808
Davis, M.J., J.A. Castorena-Gonzalez, H.J. Kim, M. Li, M. Remedi, and C.G. Nichols. (2023). Lymphatic contractile dysfunction in mouse models of Cantú Syndrome with K channel gain-of-function. Function (Oxf) 4: zqad017. 37214333
Doupnik, C.A. (2008). GPCR-Kir channel signaling complexes: defining rules of engagement. J Recept Signal Transduct Res 28: 83-91. 18437632
Driggers, C.M., Y.Y. Kuo, P. Zhu, A. ElSheikh, and S.L. Shyng. (2023). Structure of an open K channel reveals tandem PIP binding sites mediating the Kir6.2 and SUR1 regulatory interface. bioRxiv. 37577494
Du, Y., T. Wang, J. Guo, W. Li, T. Yang, M. Szendrey, and S. Zhang. (2021). Kv1.5 channels are regulated by PKC-mediated endocytic degradation. J. Biol. Chem. 100514. [Epub: Ahead of Print] 33676894
Enkvetchakul, D., J. Bhattacharyya, I. Jeliazkova, D.K. Groesbeck, C.A. Cukras, and C.G. Nichols. (2004). Functional characterization of a prokaryotic Kir channel. J. Biol. Chem. 279: 47076-47080. 15448150
Epshtein, Y., A.P. Chopra, A. Rosenhouse-Dantsker, G.B. Kowalsky, D.E. Logothetis, and I. Levitan. (2009). Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc. Natl. Acad. Sci. USA 106: 8055-8060. 19416905
Fagnen, C., L. Bannwarth, I. Oubella, D. Zuniga, A. Haouz, E. Forest, R. Scala, S. Bendahhou, R. De Zorzi, D. Perahia, and C. Vénien-Bryan. (2021). Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain. Int J Mol Sci 23:. 35008764
Fernandes, C.A.H., D. Zuniga, C. Fagnen, V. Kugler, R. Scala, G. Péhau-Arnaudet, R. Wagner, D. Perahia, S. Bendahhou, and C. Vénien-Bryan. (2022). Cryo-electron microscopy unveils unique structural features of the human Kir2.1 channel. Sci Adv 8: eabq8489. 36149965
Fernandes, M.A., M.S. Santos, A.J. Moreno, G. Duburs, C.R. Oliveira, and J.A. Vicente. (2004). Glibenclamide interferes with mitochondrial bioenergetics by inducing changes on membrane ion permeability. J Biochem Mol Toxicol 18: 162-169. 15252873
Ferreira, G., A. Santander, R. Cardozo, L. Chavarría, L. Domínguez, N. Mujica, M. Benítez, S. Sastre, L. Sobrevia, and G.L. Nicolson. (2023). Nutrigenomics of inward rectifier potassium channels. Biochim. Biophys. Acta. Mol Basis Dis 1869: 166803. [Epub: Ahead of Print] 37406972
Flagg, T.P., F. Charpentier, J. Manning-Fox, M.S. Remedi, D. Enkvetchakul, A. Lopatin, J. Koster, and C. Nichols. (2004). Remodeling of excitation-contraction coupling in transgenic mice expressing ATP-insensitive sarcolemmal KATP channels. Am. J. Physiol. Heart Circ Physiol 286: H1361-1369. 14656703
Fodstad, H., H. Swan, M. Auberson, I. Gautschi, J. Loffing, L. Schild, and K. Kontula. (2004). Loss-of-function mutations of the K+ channel gene KCNJ2 constitute a rare cause of long QT syndrome. J Mol. Cell Cardiol 37: 593-602. 15276028
Fürst, O., C.G. Nichols, G. Lamoureux, and N. D''Avanzo. (2014). Identification of a cholesterol-binding pocket in inward rectifier K+ (Kir) channels. Biophys. J. 107: 2786-2796. 25517146
Gao, J., J. Wang, Y. Han, Q. Deng, X. Wang, W. Cai, and Y. Chen. (2022). [Clinical characteristics and genetic analysis of an ethnic Han Chinese child with Keppen-Lubinsky syndrome due to a de novo KCNJ6 mutation]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 39: 35-38. 34964963
Garcia ML., Priest BT., Alonso-Galicia M., Zhou X., Felix JP., Brochu RM., Bailey T., Thomas-Fowlkes B., Liu J., Swensen A., Pai LY., Xiao J., Hernandez M., Hoagland K., Owens K., Tang H., de Jesus RK., Roy S., Kaczorowski GJ. and Pasternak A. (2014). Pharmacologic inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis. J Pharmacol Exp Ther. 348(1):153-64. 24142912
Gazgalis, D., L. Cantwell, Y. Xu, G.A. Thakur, M. Cui, F. Guarnieri, and D.E. Logothetis. (2022). Use of a Molecular Switch Probe to Activate or Inhibit GIRK1 Heteromers In Silico Reveals a Novel Gating Mechanism. Int J Mol Sci 23:. 36142730
Glaaser, I.W. and P.A. Slesinger. (2015). Structural Insights into GIRK Channel Function. Int Rev Neurobiol 123: 117-160. 26422984
Hager, N.A., C.K. McAtee, M.A. Lesko, and A.F. O''Donnell. (2021). Inwardly Rectifying Potassium Channel Kir2.1 and its "Kir-ious" Regulation by Protein Trafficking and Roles in Development and Disease. Front Cell Dev Biol 9: 796136. 35223865
Haider, S., A.I. Tarasov, T.J. Craig, M.S. Sansom, and F.M. Ashcroft. (2007). Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis. EMBO. J. 26: 3749-3759. 17673911
Hansen, S.B., X. Tao, and R. MacKinnon. (2011). Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477: 495-498. 21874019
Hernandez, C.C., L.E. Gimenez, N.S. Dahir, A. Peisley, and R.D. Cone. (2023). The unique structural characteristics of the Kir 7.1 inward rectifier potassium channel: A novel player in energy homeostasis control. Am. J. Physiol. Cell Physiol. [Epub: Ahead of Print] 36717105
Hill, C.E., M.M. Briggs, J. Liu, and L. Magtanong. (2002). Cloning, expression, and localization of a rat hepatocyte inwardly rectifying potassium channel. Am. J. Physiol. Gastrointest. Liver Physiol. 282: G233-G240. 11804844
Hille, B. (1992). Ionic Channels of Excitable Membranes, 2nd ed. Sinaur Associates, Inc., Sunderland, MA.
Ho, I.H.M. and R.D. Murrell-Lagnado. (1999). Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem. 274: 8639-8648. 10085101
Huang, C.W. and C.C. Kuo. (2016). A synergistic blocking effect of Mg2+ and spermine on the inward rectifier K+ (Kir2.1) channel pore. Sci Rep 6: 21493. 26869275
Inanobe, A., A. Nakagawa, and Y. Kurachi. (2011). Interactions of cations with the cytoplasmic pores of inward rectifier K+ channels in the closed state. J. Biol. Chem. 286: 41801-41811. 21982822
Ishihara, K., T. Yamamoto, and Y. Kubo. (2009). Heteromeric assembly of inward rectifier channel subunit Kir2.1 with Kir3.1 and with Kir3.4. Biochem. Biophys. Res. Commun. 380: 832-837. 19338762
Jaroslawski, S., B. Zadek, F. Ashcroft, C. Venien-Bryan, and S. Scheuring. (2007). Direct visualization of KirBac3.1 potassium channel gating by atomic force microscopy. J. Mol. Biol. 374(2):500-505. 17936299
Jaudon, F., M. Albini, S. Ferroni, F. Benfenati, and F. Cesca. (2021). A developmental stage- and Kidins220-dependent switch in astrocyte responsiveness to brain-derived neurotrophic factor. J Cell Sci. [Epub: Ahead of Print] 34279618
Jesus, R.L.C., I.L.P. Silva, F.A. Araújo, R.A. Moraes, L.B. Silva, D.S. Brito, G.B.C. Lima, Q.L. Alves, and D.F. Silva. (2022). 7-Hydroxycoumarin Induces Vasorelaxation in Animals with Essential Hypertension: Focus on Potassium Channels and Intracellular Ca Mobilization. Molecules 27:. 36364149
Kitamura, S., N. Murao, S. Yokota, M. Shimizu, T. Ono, Y. Seino, A. Suzuki, Y. Maejima, and K. Shimomura. (2023). Effect of fenofibrate and selective PPARα modulator (SPPARMα), pemafibrate on KATP channel activity and insulin secretion. BMC Res Notes 16: 202. 37697384
Kuo, A., J.M. Gulbis, J.F. Antcliff, T. Rahman, E.D. Lowe, J. Zimmer, J. Cuthbertson, F.M. Ashcroft, T. Ezaki, and D.A. Doyle. (2003). Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300: 1922-1926. 12738871
Kurata, H.T., M. Rapedius, M.J. Kleinman, T. Baukrowitz, and C.G. Nichols. (2010). Voltage-dependent gating in a "voltage sensor-less" ion channel. PLoS Biol 8: e1000315. 20208975
Kuß, J., B. Stallmeyer, M. Goldstein, S. Rinné, C. Pees, S. Zumhagen, G. Seebohm, N. Decher, L. Pott, M.C. Kienitz, and E. Schulze-Bahr. (2019). Familial Sinus Node Disease Caused by a Gain of GIRK (G-Protein Activated Inwardly Rectifying K Channel) Channel Function. Circ Genom Precis Med 12: e002238. 30645171
Leal-Pinto, E., Y. Gómez-Llorente, S. Sundaram, Q.Y. Tang, T. Ivanova-Nikolova, R. Mahajan, L. Baki, Z. Zhang, J. Chavez, I. Ubarretxena-Belandia, and D.E. Logothetis. (2010). Gating of a G protein-sensitive mammalian Kir3.1 prokaryotic Kir channel chimera in planar lipid bilayers. J. Biol. Chem. 285: 39790-39800. 20937804
Lee, A.G. (2020). Interfacial Binding Sites for Cholesterol on Kir, Kv, K, and Related Potassium Channels. Biophys. J. [Epub: Ahead of Print] 32553129
Li, C. and Y. Yang. (2023). Advancements in the study of inward rectifying potassium channels on vascular cells. Channels (Austin) 17: 2237303. 37463317
Li, D., T. Jin, D. Gazgalis, M. Cui, and D.E. Logothetis. (2019). On the mechanism of the GIRK2 channel gating by phosphatidylinositol bisphosphate (PIP2), sodium, and the Gβγ dimer. J. Biol. Chem. [Epub: Ahead of Print] 31659119
Li, J., C.F. Kline, T.J. Hund, M.E. Anderson, and P.J. Mohler. (2010). Ankyrin-B regulates Kir6.2 membrane expression and function in heart. J. Biol. Chem. 285: 28723-28730. 20610380
Li, J., Y. Li, Y. Liu, H. Yu, N. Xu, D. Huang, Y. Xue, S. Li, H. Chen, J. Liu, Q. Li, Y. Zhao, R. Zhang, H. Xue, Y. Sun, M. Li, P. Li, M. Liu, Z. Zhang, X. Li, W. Du, N. Wang, and B. Yang. (2021). Fibroblast Growth Factor 21 Ameliorates Na1.5 and Kir2.1 Channel Dysregulation in Human AC16 Cardiomyocytes. Front Pharmacol 12: 715466. 34630093
Lin, Y.W., J.D. Bushman, F.F. Yan, S. Haidar, C. Macmullen, A. Ganguly, C.A. Stanley, and S.L. Shyng. (2008). Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. J. Biol. Chem. 283: 9146-9156. 18250167
Lyu, C., G.W. Lyu, J. Mulder, A. Martinez, and T.S. Shi. (2020). G Protein-Gated Inwardly Rectifying Potassium Channel Subunit 3 is Upregulated in Rat DRGs and Spinal Cord After Peripheral Nerve Injury. J Pain Res 13: 419-429. 32110090
Ma, D., X.D. Tang, T.B. Rogers, and P.A. Welling. (2007). An Andersen-Tawil syndrome mutation in Kir2.1 (V302M) alters the G-loop cytoplasmic K+ conduction pathway. J. Biol. Chem. 282: 5781-5789. 17166852
Makary, S.M., T.W. Claydon, K.M. Dibb, and M.R. Boyett. (2006). Base of pore loop is important for rectification, activation, permeation, and block of Kir3.1/Kir3.4. Biophys. J. 90: 4018-4034. 16513790
Maksaev, G., M. Bründl-Jirout, A. Stary-Weinzinger, E.M. Zangerl-Plessl, S. Lee, and C. Nichols. (2023). Subunit gating resulting from individual protonation events in Kir2 channels. Res Sq. 36993294
Maksaev, G., M. Bründl-Jirout, A. Stary-Weinzinger, E.M. Zangerl-Plessl, S.J. Lee, and C.G. Nichols. (2023). Subunit gating resulting from individual protonation events in Kir2 channels. Nat Commun 14: 4538. 37507406
Marmolejo-Murillo, L.G., I.A. Aréchiga-Figueroa, E.G. Moreno-Galindo, R.A. Navarro-Polanco, A.A. Rodríguez-Menchaca, M. Cui, J.A. Sánchez-Chapula, and T. Ferrer. (2017). Chloroquine blocks the Kir4.1 channels by an open-pore blocking mechanism. Eur J Pharmacol 800: 40-47. 28216048
Martin, G.M., B. Kandasamy, F. DiMaio, C. Yoshioka, and S.L. Shyng. (2017). Anti-diabetic drug binding site in a mammalian K channel revealed by Cryo-EM. Elife 6:. 29035201
Martin, G.M., C. Yoshioka, E.A. Rex, J.F. Fay, Q. Xie, M.R. Whorton, J.Z. Chen, and S.L. Shyng. (2017). Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Elife 6:. [Epub: Ahead of Print] 28092267
Matamoros, M. and C.G. Nichols. (2021). Pore-forming transmembrane domains control ion selectivity and selectivity filter conformation in the KirBac1.1 potassium channel. J Gen Physiol 153:. 33779689
Mathiharan, Y.K., I.W. Glaaser, Y. Zhao, M.J. Robertson, G. Skiniotis, and P.A. Slesinger. (2021). Structural insights into GIRK2 channel modulation by cholesterol and PIP. Cell Rep 36: 109619. 34433062
Meng, X.Y., H.X. Zhang, D.E. Logothetis, and M. Cui. (2012). The molecular mechanism by which PIP(2) opens the intracellular G-loop gate of a Kir3.1 channel. Biophys. J. 102: 2049-2059. 22824268
Meng, X.Y., S. Liu, M. Cui, R. Zhou, and D.E. Logothetis. (2016). The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel. Sci Rep 6: 29399. 27439597
Minor, D.L., Jr., S.J. Masseling, Y.N. Jan, and L.Y. Jan. (1999). Transmembrane structure of an inwardly rectifying potassium channel. Cell 96: 879-891. 10102275
Morin, M., A.L. Forst, P. Pérez-Torre, A. Jiménez-Escrig, V. Barca-Tierno, E. García-Galloway, R. Warth, J.L. Lopez-Sendón Moreno, and M.A. Moreno-Pelayo. (2020). Novel mutations in the KCNJ10 gene associated to a distinctive ataxia, sensorineural hearing loss and spasticity clinical phenotype. Neurogenetics. [Epub: Ahead of Print] 32062759
Ortiz, D. and J. Bryan. (2015). Neonatal Diabetes and Congenital Hyperinsulinism Caused by Mutations in ABCC8/SUR1 are Associated with Altered and Opposite Affinities for ATP and ADP. Front Endocrinol (Lausanne) 6: 48. 25926814
Partridge, C.J., D.J. Beech, and A. Sivaprasadarao. (2001). Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism. J. Biol. Chem. 276: 35947-35952. 11457841
Payne, J.E., A.V. Dubois, R.J. Ingram, S. Weldon, C.C. Taggart, J.S. Elborn, and M.M. Tunney. (2017). Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens. Int J Antimicrob Agents 50: 427-435. 28666755
Pegan, S., C. Arrabit, W. Zhou, W. Kwiatkowski, A. Collins, P.A. Slesinger, and S. Choe. (2005). Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8: 279-287. 15723059
Pratt, E.B. and S.L. Shyng. (2011). ATP activates ATP-sensitive potassium channels composed of mutant sulfonylurea receptor 1 and Kir6.2 with diminished PIP2 sensitivity. Channels (Austin) 5: 314-319. 21654216
Principalli, M.A., J.P. Dupuis, C.J. Moreau, M. Vivaudou, and J. Revilloud. (2015). Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues. Physiol Rep 3:. 26416970
Rajabian, A., F. Rajabian, F. Babaei, M. Mirzababaei, M. Nassiri-Asl, and H. Hosseinzadeh. (2022). Interaction of Medicinal Plants and Their Active Constituents With Potassium Ion Channels: A Systematic Review. Front Pharmacol 13: 831963. 35273505
Rapedius, M., S. Haider, K.F. Browne, L. Shang, M.S. Sansom, T. Baukrowitz, and S.J. Tucker. (2006). Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel. EMBO Rep 7: 611-616. 16641935
Raphemot, R., T.Y. Estévez-Lao, M.F. Rouhier, P.M. Piermarini, J.S. Denton, and J.F. Hillyer. (2014). Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production. Insect Biochem Mol Biol 51: 10-19. 24855023
Remedi, M.S., J.B. Friedman, and C.G. Nichols. (2017). Diabetes induced by gain-of-function mutations in the Kir6.1 subunit of the KATP channel. J Gen Physiol 149: 75-84. 27956473
Rodríguez-Menchaca, A.A., R.A. Navarro-Polanco, T. Ferrer-Villada, J. Rupp, F.B. Sachse, M. Tristani-Firouzi, and J.A. Sánchez-Chapula. (2008). The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proc. Natl. Acad. Sci. U.S.A. 105: 1364-1368. 18216262
Rodríguez-Menchaca, A.A., I.A. Aréchiga-Figueroa, and J.A. Sánchez-Chapula. (2016). The molecular basis of chloroethylclonidine block of inward rectifier (Kir2.1 and Kir4.1) K+ channels. Pharmacol Rep 68: 383-389. 26922543
Rosenhouse-Dantsker, A. (2018). Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details. Lipid Insights 11: 1178635317754071. 29467578
Rosenhouse-Dantsker, A. (2019). Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels. Adv Exp Med Biol 1135: 119-138. 31098814
Rufino, A.T., S.C. Rosa, F. Judas, A. Mobasheri, M.C. Lopes, and A.F. Mendes. (2013). Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: Possible role in glucose sensing. J. Cell. Biochem. 114: 1879-1889. 23494827
Ruknudin, A., D.H. Schulze, S.K. Sullivan, W.J. Lederer, and P.A. Welling. (1998). Novel subunit composition of a renal epithelial KATP channel. J. Biol. Chem. 273: 14165-14171. 9603917
Sackin, H., M. Nanazashvili, L.G. Palmer, M. Krambis, and D.E. Walters. (2005). Structural locus of the pH gate in the Kir1.1 inward rectifier channel. Biophys. J. 88: 2597-2606. 15653740
Saito, T., T. Sato, T. Miki, S. Seino, and H. Nakaya. (2005). Role of ATP-sensitive K+ channels in electrophysiological alterations during myocardial ischemia: a study using Kir6.2-null mice. Am. J. Physiol. Heart Circ Physiol 288: H352-357. 15598870
Salkoff, L. and T. Jegla. (1995). Surfing the DNA databases for K+ channels nets yet more diversity. Neuron 15: 489-492. 7546728
Seino, S. (1999). ATP-sensitive potassium channels: a model of heteromultimeric potassium channel-receptor assemblies. Annu. Rev. Physiol. 61: 337-362. 10099692
Shibata, M., E. Ishizaki, T. Zhang, M. Fukumoto, A. Barajas-Espinosa, T. Li, and D.G. Puro. (2018). Purinergic Vasotoxicity: Role of the Pore/Oxidant/K Channel/Ca Pathway in P2X-Induced Cell Death in Retinal Capillaries. Vision (Basel) 2:. 30288454
Shin, H.G. and Z. Lu. (2005). Mechanism of the voltage sensitivity of IRK1 inward-rectifier K+ channel block by the polyamine spermine. J Gen Physiol 125: 413-426. 15795311
Shuck, M.E., J.H. Bock, C.W. Benjamin, T.D. Tsai, K.S. Lee, J.L. Slightom, and M.J. Bienkowski. (1994). Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel. J. Biol. Chem. 269: 24261-24270. 7929082
Sun, W., T. Li, H. Ma, S. Lin, M. Xie, Y. Luo, R. Tian, and S. Tang. (2019). The effect of K+ channel opener pinacidil on the transmembrane potassi channel protein kir4.1 of retinal müller cells in vitro and diabetic rats. Panminerva Med. [Epub: Ahead of Print] 31089080
Sung, M.W., C.M. Driggers, B. Mostofian, J.D. Russo, B.L. Patton, D.M. Zuckerman, and S.L. Shyng. (2022). Ligand-mediated Structural Dynamics of a Mammalian Pancreatic K Channel. J. Mol. Biol. 434: 167789. 35964676
Suzuki, Y., M. Itakura, M. Kashiwagi, N. Nakamura, T. Matsuki, H. Sakuta, N. Naito, K. Takano, T. Fujita, and S. Hirose. (1999). Identification by differential display of a hypertonicity-inducible inward rectifier potassium channel highly expressed in chloride cells. J. Biol. Chem. 274: 11376-11382. 10196230
Tammaro, P. and F.M. Ashcroft. (2007). A mutation in the ATP-binding site of the Kir6.2 subunit of the KATP channel alters coupling with the SUR2A subunit. J. Physiol. 584: 743-753. 17855752
Tanemoto, M., T. Abe, S. Uchida, and K. Kawahara. (2014). Mislocalization of K+ channels causes the renal salt wasting in EAST/SeSAME syndrome. FEBS Lett. 588: 899-905. 24561201
Tao, X., J.L. Avalos, J. Chen, and R. MacKinnon. (2009). Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 Å resolution. Science 326: 1668-1674. 20019282
Toms, M., A.M. Dubis, W.S. Lim, A.R. Webster, M.B. Gorin, and M. Moosajee. (2019). Missense variants in the conserved transmembrane M2 protein domain of KCNJ13 associated with retinovascular changes in humans and zebrafish. Exp Eye Res 189: 107852. 31647904
Töpert, C., F. Döring, E. Wischmeyer, C. Karschin, J. Brockhaus, K. Ballanyi, C. Derst, and A. Karschin. (1998). Kir2.4: a novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J. Neurosci. 18: 4096-4105. 9592090
Tselnicker, I. and N. Dascal. (2010). Further characterization of regulation of Ca(V)2.2 by stargazin. Channels (Austin) 4: 351-354. 21139418
Usher, S.G., F.M. Ashcroft, and M.C. Puljung. (2021). Measuring Nucleotide Binding to Intact, Functional Membrane Proteins in Real Time. J Vis Exp. 33779593
Vera, E., I. Cornejo, J. Burgos, M.I. Niemeyer, F.V. Sepúlveda, and L.P. Cid. (2019). A novel Kir7.1 splice variant expressed in various mouse tissues shares organisational and functional properties with human leber amaurosis-causing mutations of this K channel. Biochem. Biophys. Res. Commun. [Epub: Ahead of Print] 31056263
Wang S., Makhina EN., Masia R., Hyrc KL., Formanack ML. and Nichols CG. (2013). Domain organization of the ATP-sensitive potassium channel complex examined by fluorescence resonance energy transfer. J Biol Chem. 288(6):4378-88. 23223337
Weng, J., A. Wang, D. Zhang, C. Liao, and G. Li. (2021). A double bilayer to study the nonequilibrium environmental response of GIRK2 in complex states. Phys Chem Chem Phys 23: 15784-15795. 34286758
Wu, X.Y. and X.Y. Yu. (2019). Overexpression of KCNJ4 correlates with cancer progression and unfavorable prognosis in lung adenocarcinoma. J Biochem Mol Toxicol 33: e22270. 30512237
Xie, L.H., S.A. John, B. Ribalet, and J.N. Weiss. (2005). Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels. J Gen Physiol 126: 541-549. 16316973
Yan, F.F., Y.W. Lin, C. MacMullen, A. Ganguly, C.A. Stanley, and S.L. Shyng. (2007). Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes 56: 2339-2348. 17575084
Yang, Y., W. Shi, X. Chen, N. Cui, A.S. Konduru, Y. Shi, T.C. Trower, S. Zhang, and C. Jiang. (2011). Molecular basis and structural insight of vascular K(ATP) channel gating by S-glutathionylation. J. Biol. Chem. 286: 9298-9307. 21216949
Yekefallah, M., C.A. Rasberry, E.J. van Aalst, H.P. Browning, R. Amani, D.B. Versteeg, and B.J. Wylie. (2022). Mutational Insight into Allosteric Regulation of Kir Channel Activity. ACS Omega 7: 43621-43634. 36506180
Yokogawa, M., M. Osawa, K. Takeuchi, Y. Mase, and I. Shimada. (2011). NMR analyses of the Gbetagamma binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1). J. Biol. Chem. 286: 2215-2223. 21075842
Zangerl-Plessl, E.M., M. Qile, M. Bloothooft, A. Stary-Weinzinger, and M.A.G. van der Heyden. (2019). Disease Associated Mutations in K Proteins Linked to Aberrant Inward Rectifier Channel Trafficking. Biomolecules 9:. 31731488
Zeng, W.-Z., X.-J. Li, D.W. Hilgemann, and C.-L. Huang. (2003). Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. J. Biol. Chem. 278: 16852-16856. 12615924
Zhang, B., Y. Jin, L. Zhang, H. Wang, and X. Wang. (2022). Pentamidine Ninety Years on: the Development and Applications of Pentamidine and its Analogs. Curr. Med. Chem. [Epub: Ahead of Print] 35289252
Zhang, C., T. Miki, T. Shibasaki, M. Yokokura, A. Saraya, and S. Seino. (2005). Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish. Physiol Genomics. 24: 290-297. 16317080
Zhang, W., P. Das, S. Kelangi, and M. Bei. (2020). Potassium channels as potential drug targets for limb wound repair and regeneration. Precis Clin Med 3: 22-33. 32257531
Zhao, Z., G. Liu, H. Zhang, P. Ruan, J. Ge, and Q. Liu. (2021). BIRC5, GAJ5, and lncRNA NPHP3-AS1 Are Correlated with the Development of Atrial Fibrillation-Valvular Heart Disease. Int Heart J 62: 153-161. 33518654
Zhou, Q., E.B. Pratt, and S.L. Shyng. (2013). Engineered Kir6.2 mutations that correct the trafficking defect of K(ATP) channels caused by specific SUR1 mutations. Channels (Austin) 7: 313-317. 23695995
Zhou, Y., Z. Li, C. Chi, C. Li, M. Yang, and B. Liu. (2023). Identification of Hub Genes and Potential Molecular Pathogenesis in Substantia Nigra in Parkinson''s Disease via Bioinformatics Analysis. Parkinsons Dis 2023: 6755569. 37089789