TCDB is operated by the Saier Lab Bioinformatics Group

1.A.4 The Transient Receptor Potential Ca2+/Cation Channel (TRP-CC) Family

TRP (transient receptor potential) channels represent a superfamily of cation channels conserved from worms to humans (Vennekens et al. 2012).  They comprise seven subfamilies (TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML) that can be consider to be in two classes, group I (TRPC/V/M/N/A) and TRPML (TRP MucoLipin) and TRPP (TRP Polycystin) making up group II (Fine et al. 2019). According to Latorre et al. (2009), TRP channels can be grouped into seven subfamilies based on their amino acid sequence homology: (1) the canonical or classic TRPs, (2) the vanilloid receptor TRPs, (3) the melastatin or long TRPs, (4) ankyrin (whose only member is the transmembrane protein 1 [TRPA1]), (5) TRPN after the nonmechanoreceptor potential C (nonpC), and the more distant cousins, the (6) polycystins and (7) mucolipins. Members of the VIC (1.A.1), RIR-CaC (2.A.3) and TRP-CC (1.A.4). Families have similar transmembrane domain structures, but very different cytosolic doman structures (Mio et al. 2008).  Because of their role as cellular sensors, polymodal activation and gating properties, many TRP channels are activated by a variety of different stimuli and function as signal integrators (Latorre et al., 2009; Montell, 2005; Ramsey et al., 2006). These mammalian proteins have been tabulated revealing their accepted designations, activators and inhibitors, putative interacting proteins and proposed functions (Clapham, 2007). The founding members of the TRP superfamily are the TRPC (TRP canonical) channels, which can be activated following the stimulation of phospholipase C and/or depletion of internal calcium stores (Montell, 2005). TRPC channels regulate nicotine-dependent behavior (Feng et al., 2006).  The intrinsic assembly domains that assure tetrameric TRP channel formation have been reviewed (Schindl and Romanin 2007). They also function by depolarising the membrane potential, which triggers the activation of voltage-gated Ca2+ channels.  Structural differences in the extracellular portions, transmembrane domains and the cytoplasmic domains of TRPC channels have been reviewed (Guo and Chen 2019). Cryo-EM has led to an explosion of TRP structures in the last few years (Cao 2020). These structures have confirmed that TRP channels assemble as tetramers and resemble voltage-gated ion channels in their overall architecture. However, each TRP subtype is endowed with a unique set of soluble domains that may confer diverse regulatory mechanisms. TRP channel structures have revealed sites and mechanisms of action of numerous synthetic and natural compounds, as well as those for endogenous ligands such as lipids, Ca2+, and calmodulin (Cao 2020). The role of TRP channels on taste and pain perception has been reviewed (Aroke et al. 2020). Genomic variability in the TRPV1 gene has been associated with alterations in various pain conditions, and polymorphisms of the TRPV1 gene have been associated with alterations in salty taste sensitivity and salt preference (Aroke et al. 2020). The involvement of  TRPM channels in human diseases has been reviewed (Jimenez et al. 2020). Interfacial binding sites for cholesterol are present on TRP ion channels (Lee 2019). It has been proposed that there is a close relationship between cholesterol binding and TRP channel function (Méndez-Reséndiz et al. 2020). The endogenous and pharmacological ligand-binding sites of TRP channels and their regulatory mechanisms have been reviewed (Zhao et al. 2021).

Alonso-Carbajo et al. 2017 reviewed the functions of these proteins in human vascular smooth muscle and cardiac striated muscle. The mammalian TRP superfamily includes at least 22 genes grouped into three major subfamilies based on sequence homology: TRPV (vanilloid), TRPC (canonical), and TRPM (melastatin). Three additional subfamilies (the 'distant TRPs'), TRPP (polycystin), TRPML (mucolipin), and TRPA bring the total number of TRP-related proteins to around 30. TRP proteins are six transmembrane-domain polypeptide subunits, and four subunits assemble in the plasma membrane to form functional channels. All TRP channels are cation permeable, and most are not selective for monovalent or divalent ions. However, TRPV5 and TRPV6, display specificity for Ca2+ ions, and TRPM4 and TRPM5 are highly selective for monovalent cations and impermeant to Ca2+.  TRP channels are activated by stimuli including changes in pressure, temperature, osmolarity, and intracellular Ca2+.  Fatty acids and receptor-dependent vasoconstrictor agonists also activate vascular TRP channels. Most channels assemble from four identical TRP subunits, but when multiple TRP subunits are coexpressed, heteromeric channels can form (Alonso-Carbajo et al. 2017). Over 75 structures of these proteins have been solved by cryo-EM (Madej and Ziegler 2018). They reveal a lack of an apparent general mechanism underlying channel opening and closing. Similarly, the structures reveal a surprising diversity in which chemical ligands bind TRP channels (Hilton et al. 2019). TRP channels in zhikong scallops (Chlamys farreri) are functional diversity (Peng et al. 2021).

The mammalian TRPM gene family can be subdivided into distinct categories of cation channels that are either highly permeable for Ca2+ (TRPM3/6/7), nonselective (TRPM2/8), or Ca2+ impermeable (TRPM4/5). TRPM6/7 are fused to alpha-kinase domains, whereas TRPM2 is linked to an ADP-ribose phosphohydrolase (Nudix domain). Phylogenetic evidence suggests that Nudix-linked channels represent an ancestral type of TRPM that is present in various phyla, ranging from protists to humans (Mederos y Schnitzler et al., 2008). The pore-forming segments of invertebrate TRPM2-like proteins display high sequence similarity to those of Ca2+-selective TRPMs. Restoration of only two 'ancient' pore residues in human TRPM2 (Q981E/P983Y) increased (4-fold) its permeability for Ca2+. Conversely, introduction of a 'modern' sequence motif into mouse TRPM7 (E1047Q/Y1049P) resulted in the loss of Ca2+ permeation and a linear TRPM2-like current-voltage relationship (Mederos y Schnitzler et al., 2008).  A cooperative knock-on mechanism underpins Ca2+-selective cation permeation in TRPV channels (Ives et al. 2023).

Volatile anaesthetics (VAs) are the most widely used compounds to induce reversible loss of consciousness and maintain general anaesthesia during surgical interventions. VAs depress central nervous system functions mainly through modulation of ion channels in the neuronal membrane, including 2-pore-domain K+ channels, GABA, NMDA receptors and nociceptive and thermosensitive TRP channels expressed in the peripheral nervous system, including TRPV1, TRPA1, TRPM3 and TRPM8 (Kelemen et al. 2020).  Comparison of structures determined of many Trp channels in the absence or presence of activating stimuli revealed similar constrictions in the central ion permeation pathway near the intracellular end of the S6 helices, pointing to a conserved cytoplasmic gate and suggesting that most available Trp channel structures represent non-conducting states (Huffer et al. 2020). Organisms consuming plants use TRP channel agonists as defense mechanisms (Gandhi et al. 2021). Since the expression pattern and ligand sensitivity of TRP channels varies between species, this presents an intriguing evolutionary adaptation to their specific habitat and life cycles. TRP channel levels influence symptoms of patients with pancreatic adenocarcinoma (Chelaru et al. 2022). The blockade of zinc translocation via the inhibition of the TRPC and TRPM channels was shown to be neuroprotective in brain disease (Hong et al. 2023).

The TRP-CC family includes a variety of channel/sensors that respond to temperature, touch, pain, osmolarity, pheromones, taste, and other stimuli (Clapham, 2003). It has also been called the store-operated calcium channel (SOC) family. These proteins are the prinicipal components in mechanosensitive channels in vertebrate hair cells (TRPA1; 1.A.4.6.1) and stretch-activated channels in various vertebrate cell types (TRPC1; 1.A.4.1.3) (Barritt and Rychkov, 2005). TRPA1 and TRPC1 may use different mechanisms of activation. (a) The functional TRPA1 channel is probably a tetramer that is composed of four identical TRPA1 polypeptide chains or a mixture of TRPA1 and another channel polypeptide. Each TRPA1 polypeptide has 17 ankyrin repeats at the cytoplasmic amino terminus. It is proposed that these are coupled to motor proteins or other regulatory proteins on the cytoplasmic face of the plasma membrane (Barritt and Rychkov, 2005). In response to the deflection of the mechanosensitive cilia bundle induced by sound, tension on the ankyrin repeat domains or changes in protein-protein interactions are altered and the channel opens to admit Ca2+ and other cations. (b) The functional TRPC1 channel is probably a tetramer that is composed of four identical TRPC1 polypeptides or a mixture of TRPC1 polypeptides and another polypeptide. Although each TRPC1 polypeptide contains 3 or 4 ankyrin domains at the N terminus, it is proposed that these are not directly involved in channel gating. In response to a stimulus, such as stretching of the membrane by an increase in the volume of the cell, the channel opens and admits Ca2+. It is possible that release of Ca2+ from the endoplasmic reticulum that is induced by thapsigargin also acts as a stimulus, which alters cell volume and therefore can activate TRPC1 through changes in tension of the phospholipid bilayer. The activation of TRP channels by polyunsaturated fatty acids has been examined, and residues involved have been identified (Riehle et al. 2018).

Prototypical members of the TRP-CC family include the Drosophila retinal proteins TRP and TRPL (Montell and Rubin, 1989; Hardie and Minke, 1993). The 81 aas integral membrane INAF-B protein forms a complex with TRP channels, and they stabilize each other (Cheng and Nash, 2007). SOC members of the family mediate the entry of extracellular Ca2+ into cells in response to depletion of intracellular Ca2+ stores (Clapham, 1996) and agonist stimulated production of inositol-1,4,5 trisphosphate (IP3). One member of the TRP-CC family, mammalian Htrp3, has been shown to form a tight complex with the IP3 receptor (TC #1.A.3.2.1). This interaction is apparently required for IP3 to stimulate Ca2+ release via Htrp3. The vanilloid receptor subtype 1 (VR1), which is the receptor for capsaicin (the 'hot' ingredient in chili peppers) and serves as a heat-activated ion channel in the pain pathway (Caterina et al., 1997), is also a member of this family, and is activated by cannabinoids (i.e., anandamide) and certain inflammatory metabolites of arachidonate such as prostaglandin E2 (Olah et al., 2001). The stretch-inhibitable non-selective cation channel (SIC) is identical to the vanilloid receptor throughout all of its first 700 residues, but it exhibits a different sequence in its last 100 residues. VR1 and SIC transport monovalent cations as well as Ca2+. VR1 is about 10x more permeable to Ca2+ than to monovalent ions. Ca2+ overload probably causes cell death after chronic exposure to capsaicin (McCleskey and Gold, 1999). Molecular characteristics and expression profiles of nine TRP channels in the brown planthopper, Nilaparvata lugens, have been described (Wang et al. 2021).

The proteins of the TRP-CC family exhibit the same topological organization with a probable KscA-type 3-dimensional structure (Dodier et al., 2004; Dohke et al., 2004). They consist of about 700-800 (VR1, SIC or ECaC) or 1300 (TRP proteins) amino acyl residues with six transmembrane spanners (TMSs) as well as a short hydrophobic 'loop' region between TMSs 5 and 6. This loop region may dip into the membrane and contribute to the ion permeation pathway (Hardie and Minke, 1993). An aspartate residue in the P-loop may form a ring of negative charges that modulate pore properties including ion selectivity and inhibitory characteristics (García-Martínez et al., 2000). VR1 forms homotetramers. In these respects, members of the TRP-CC family resemble those of the VIC family. When one member of the TRP-CC family, the IGF-regulated Ca2+ channel of Mus musculus (TC #1.A.4.2.4), was PSI-BLASTED, it retrieved a partial sequence of a Zea mays K+ channel protein (887 aas; gbY07632) that is clearly a member of the VIC family. The two homologous protein segments of 150 residues were 28% identical, 42% similar with a PSI-BLAST score (without iterations) of 2e6. This observation further suggests a common origin for certain domains in the TRP-CC and VIC families.

All members of the vanilloid family of TRP channels (TRPV) possess an N-terminal ankyrin repeat domain (ARD), which regulates calcium uptake and homeostasis. It is essential for channel assembly and regulation. The 1.7 Å crystal structure of the TRPV6-ARD revealed conserved structural elements unique to the ARDs of TRPV proteins. First, a large twist between the fourth and fifth repeats is induced by residues conserved in all TRPV ARDs. Second, the third finger loop is the most variable region in sequence, length and conformation. In TRPV6, a number of putative regulatory phosphorylation sites map to the base of this third finger. The TRPV6-ARD does not assemble as a tetramer and is monomeric in solution (Phelps et al., 2008). Voltage sensing in thermo-TRP channels has been reviewed by Brauchi and Orio, 2011. TRPV were named after the first identified member TRPV1, that is sensitive to the vanillylamide capsaicin. Six TRPV channel subtypes (TRPV1-6) are subdivided into the thermoTRPV (TRPV1-4) and the Ca2+-selective TRPV channels (TRPV5, TRPV6) (Seebohm and Schreiber 2021). They are not primarily voltage gated but have distinct properties and react to several endogenous ligands as well as different gating stimuli such as heat, pH, mechanical stress, and osmotic changes. Their physiological functions are diverse and tissue specific. They serve as sensors for different pain stimuli (heat, pressure, pH) and contribute to the homeostasis of electrolytes, the maintenance of barrier functions and the development of macrophages. Different aspects of their structures, different gating stimuli, expression patterns, physiological-pathological roles and modulating mechanisms of synthetic, natural and endogenous ligands have been reviewed (Seebohm and Schreiber 2021).

The transient receptor potential (TRP) family of ion channels participate in many signaling pathways. TRPV1 functions as a molecular integrator of noxious stimuli, including heat, low pH, and chemical ligands. The 19-A structure of TRPV1 determined by using single-particle electron cryomicroscopy exhibits fourfold symmetry and comprises two distinct regions: a large open basket-like domain, likely corresponding to the cytoplasmic N- and C-terminal portions, and a more compact domain, corresponding to the transmembrane portion (Moiseenkova et al., 2008). The assignment of transmembrane and cytoplasmic regions was supported by fitting crystal structures of the structurally homologous Kv1.2 channel and isolated TRPV1 ankyrin repeats into the TRPV1 structure. TRP channels assemble as tetramers and resemble voltage-gated ion channels in their overall architecture. But beyond the relatively conserved transmembrane core embedded within the lipid bilayer, each TRP subtype appears to be endowed with a unique set of soluble domains that may confer diverse regulatory mechanisms. TRP channel structures reveal sites and mechanisms of action of numerous synthetic and natural compounds, as well as those for endogenous ligands such as lipids, Ca2+, and calmodulin (Cao 2020). Ca2+-selective TRPV channel permeation occurs by a three-binding site knock-on mechanism, whereas a two-binding site knock-on mechanism is observed in non-selective TRPV channels (Ives et al. 2023). Each of the ion binding sites displays greater affinity for Ca2+ over Na+. As such, coupling to an extra binding site in the Ca2+-selective TRPV channels underpins their increased selectivity for Ca2+ over Na+ ions. Furthermore, analysis of all available TRPV channel structures shows that the selectivity filter entrance region is wider for the non-selective TRPV channels, slightly destabilizing ion binding at this site, which is likely to underlie mechanistic decoupling.

Most local anaesthetics used clinically are relatively hydrophobic molecules that gain access to their blocking site on the sodium channel by diffusing into or through the cell membrane. These anaesthetics block sodium channels and the excitability of neurons. Binshtok et al. (2007) tested the possibility that the excitability of primary sensory nociceptor (pain-sensing) neurons could be blocked by introducing the charged, membrane-impermeant lidocaine derivative QX-314 through the pore of the noxious-heat-sensitive TRPV1 channel (TC #1.A.4.2.1). They found that charged sodium-channel blockers can be targeted into nociceptors by the application of TRPV1 agonists to produce a pain-specific local anaesthesia. QX-314 applied externally had no effect on the activity of sodium channels in small sensory neurons when applied alone, but when applied in the presence of the TRPV1 agonist capsaicin, QX-314 blocked sodium channels and inhibited excitability (Binshtok et al., 2007).

The amino termini of TRP-CC proteins normally contain a proline-rich region and one or more ankyrin domains. VR1, for example, exhibits three such repeat domains in its amino terminal hydrophilic segment (432 amino acids). It also has a hydrophilic C-terminus that lacks recognizable motifs. The sequence similarity between VR1 and other TRP-CC family proteins is within and adjacent to the sixth TMS, including the hydrophobic 'loop' region. Unlike other TRP-CC family members, VR1 is not a SOC. Mammals appear to have multiple VR1 homologues. Fingerprint residues in TRP channels have been identified (Cabezas-Bratesco et al. 2022), revealing a conserved set of residues. This fingerprint is composed of twelve residues localized at equivalent three-dimensional positions in TRP channels from the different subtypes. These amino acids are arranged in three groups, connected by a set of aromatics located at the core of the transmembrane structure. Differences in the connectivities between these different groups of residues harbor the apparent differences in coupling strategies used by TRP subgroups (Cabezas-Bratesco et al. 2022).

One member of the TRP-CC family, TRP-PLIK (1862 aas; AF346629), has been implicated in the regulation of cell division. It has an N-terminal TRP-CC-like sequence and a C-terminal protein kinase-like sequence. It was shown to autophosphorylate and exhibits an ATP phosphorylation-dependent, non-selective, Ca2+-permeable, outward rectifying conductance (Runnels et al., 2001). Another long homologue, Melastatin, is associated with melanocytic tumor progression whereas another homologue, MTR1, is associated with Beckwith-Wiedemann syndrome and a predisposition for neoplasia. Each of these proteins may be present in the cell as several splice variants.

The rabbit kidney epithelial Ca2+ channel, ECaC, is a Ca2+-selective cation channel with monovalent cation transport activity sensitive to strong inhibition by low concentrations of Ca2+ or Mg2+. ECaC is >100 x more permeable to Ca2+ than Na+. Mutation of D542 to alanine (D542A) (not present in the TRP-CC homologue) abolishes Ca2+ permeation and divalent cation inhibition of monovalent cation permeation. The mutation does not inhibit the latter transport activity. The D542K mutation generates a nonfunctional channel. Thus, a single residue determines the characteristic cation selectivity of ECaC.

The ability to detect variations in humidity is critical for many animals. Birds, reptiles and insects all show preferences for specific humidities that influence their mating, reproduction and geographic distribution. Because of their large surface area to volume ratio, insects are particularly sensitive to humidity, and its detection can influence their survival. Two types of hygroreceptors exist in insects: one responds to an increase (moist receptor) and the other to a reduction (dry receptor) in humidity. Although previous data indicated that mechanosensation might contribute to hygrosensation, the cellular basis of hygrosensation and the genes involved in detecting humidity remain unknown. To understand better the molecular bases of humidity sensing,(Liu et al., 2007b) investigated several genes encoding channels associated with mechanosensation, thermosensing or water transport. They identified two Drosophila melanogaster transient receptor potential channels needed for sensing humidity: CG31284, named water witch (wtrw), which is required to detect moist air, and nanchung (nan), which is involved in detecting dry air. Neurons associated with specialized sensory hairs in the third segment of the antenna express these channels. Neurons expressing wtrw and nan project to central nervous system regions associated with mechanosensation (Liu et al., 2007b). The six TRP channels of dinoflagelates do not appear to be mechanoreceptors but rather are components of a mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism (Lindström et al. 2017).

TRP channels are calcium-permeable nonselective cation channels with six TMS domains and a putative pore loop between TMSs 5 and 6 (Hu et al., 2012). About 28 mammalian TRP channels have been identified, with different numbers of splicing variants for each channel gene. TRP channels have been classified into six different subgroups, including TRPV (1-6), TRPM (1-8), TRPC (1-7), TRPA1, TRPP (1-3), and TRPML (1-3), according to their sequence similarities. In general, TRP channels are involved in calcium handling (e.g., intracellular calcium mobilization and calcium reabsorption) and a broad range of sensory modalities, including pain, temperature, taste, etc. TRP channelopathies are part of important mechanisms in a variety of diseases such as neurodegenerative disorders, diabetes mellitus, inflammatory bowel diseases, epilepsy, cancer, etc. Several members of the TRP family, TRPV1-4, TRPM8, and TRPA1, also called 'ThermoTRPs,' are involved in the detection of temperature changes, thus acting as the molecular thermometers of our body. They are also polymodal nociceptors that integrate painful stimuli such as noxious temperatures and chemical insults. For example, the TRPV1 channel mediates thermal hyperalgesia and pain induced by capsaicin and acid. TRPA1 is a nociceptor that integrates many noxious environmental stimuli including oxidants and electrophilic agents. Gene deletion animals have been created to study the role of TRP channels in pain and nociception; involvement of TRPV1, TRPV3, TRPV4, and TRPA1 in nociception has been confirmed (Hu et al., 2012). 

A class of ion channels that belongs to the transient receptor potential (TRP) superfamily and is present in specialized neurons are temperature detectors. These channels are classified into subfamilies, namely canonical (TRPC), melastatin (TRPM), ankyrin (TRPA), and vanilloid (TRPV). Some of these channels are activated by heat (TRPM2/4/5, TRPV1-4), while others by cold (TRPA1, TRPC5, and TRPM8) (Baez et al. 2014). These channels resemble voltage-dependent K+ channels, with their subunits containing six transmembrane segments that form tetramers. Thermal TRP channels are polymodal receptors that can be activated by temperature, voltage, pH, lipids, and agonists. Their high temperature sensitivity is due to a large enthalpy change ( approximately 100 kcal/mol), which is about five times the enthalpy change in voltage-dependent gating. Pi-helices in TRP channels probably function in gating (Zubcevic and Lee 2019).

TRPV cation channels are polymodal sensors involved in a variety of physiological processes. TRPV2 is regulated by temperature, ligands such as probenecid and cannabinoids, and lipids. It may play a role in somatosensation, osmosensation and innate immunity. Zubcevic et al. 2016 presented the atomic model of rabbit TRPV2 in its putative desensitized state, as determined by cryo-EM at 4 A resolution. TMS6 (S6), which is involved in gate opening, adopts a conformation different from the one observed in TRPV1. Structural comparisons of TRPV1 and TRPV2 indicate that a rotation of the ankyrin-repeat domain is coupled to pore opening via the TRP domain, and this pore opening can be modulated by rearrangements in the secondary structure of S6. 

Plasma membrane ion channels, and in particular TRPC channels, need a specific membrane environment and association with scaffolding, signaling, and cytoskeleton proteins in order to play their important functional roles. TRPC proteins are incorporated into macromolecular complexes including Ca2+ signaling proteins and proteins involved in vesicle trafficking, cytoskeletal interactions, and scaffolding. Association of TRPC with calmodulin (CaM), IP3R, PMCA, Gq/11, RhoA, and a variety of scaffolding proteins has been demonstrated. The interactions between TRPC channels and adaptor proteins determines their modes of regulation as well as their cellular localizations and functions. Adaptor proteins are involved in assembling Ca2+signaling complexes, in the correct sub-cellular localization of protein partners, and in the regulation of TRPC channelosome.The S4 - S5 linker is the gear box of TRP channel gating, and many pathogenic mutations occur in this region (Hofmann et al. 2017). High resolution structures are known for TRPV1, TRPV2, TRPV6, TRPA1, and TRPP2 (Hofmann et al. 2017).

Mechanosensory transduction for senses such as proprioception, touch, balance, acceleration, hearing and pain relies on mechanotransduction channels, which convert mechanical stimuli into electrical signals in specialized sensory cells. There are two major models. One is the membrane-tension model: force applied to the membrane generates a change in membrane tension that is sufficient to gate the channel, as in bacterial MscL channels  (TC# 1.A.22) and certain eukaryotic potassium channels (TC# 1.A.1). The other is the tether model: force is transmitted via a tether to gate the channel. The transient receptor potential (TRP) channel NOMPC is important for mechanosensation-related behaviours such as locomotion, touch and sound sensation across different species including Caenorhabditis elegans, Drosophila and zebrafish. NOMPC is the founding member of the TRPN subfamily, and is thought to be gated by tethering of its ankyrin repeat domain to microtubules of the cytoskeleton (Jin et al. 2017).

The generalized transport reaction catalyzed by TRP-CC family members is:

Ca2+ (out) ⇌ Ca2+ (in)


C+ and Ca2+ (out) ⇌ C+ and Ca2+ (in).

This family belongs to the: VIC Superfamily.

References associated with 1.A.4 family:

Hu H, Bandell M, Grandl J, Petrus M. (2012) 0
Acharya, T.K., R.P. Sahu, S. Kumar, S. Kumar, T.P. Rokade, R. Chakraborty, N.K. Dubey, D. Shikha, S. Chawla, and C. Goswami. (2022). Function and regulation of thermosensitive ion channel TRPV4 in the immune system. Curr Top Membr 89: 155-188. 36210148
Agosto, M.A., I.A. Anastassov, and T.G. Wensel. (2018). Differential epitope masking reveals synapse-specific complexes of TRPM1. Vis Neurosci 35: E001. 29370879
Agosto, M.A., Z. Zhang, F. He, I.A. Anastassov, S.J. Wright, J. McGehee, and T.G. Wensel. (2014). Oligomeric State of Purified Transient Receptor Potential Melastatin-1 (TRPM1), a Protein Essential for Dim Light Vision. J. Biol. Chem. 289: 27019-27033. 25112866
Ahmed, T., C.R. Nisler, E.C. Fluck, 3rd, S. Walujkar, M. Sotomayor, and V.Y. Moiseenkova-Bell. (2021). Structure of the ancient TRPY1 channel from Saccharomyces cerevisiae reveals mechanisms of modulation by lipids and calcium. Structure. [Epub: Ahead of Print] 34453887
Al-Bataineh, M.M., T.A. Sutton, and R.P. Hughey. (2017). Novel roles for mucin 1 in the kidney. Curr Opin Nephrol Hypertens 26: 384-391. 28622163
Alonso-Carbajo, L., M. Kecskes, G. Jacobs, A. Pironet, N. Syam, K. Talavera, and R. Vennekens. (2017). Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium 66: 48-61. 28807149
Amantini, C., M. Mosca, M. Nabissi, R. Lucciarini, S. Caprodossi, A. Arcella, F. Giangaspero, and G. Santoni. (2007). Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102: 977-990. 17442041
Amarouch, M.Y. and J. El Hilaly. (2020). Inherited Cardiac Arrhythmia Syndromes: Focus on Molecular Mechanisms Underlying TRPM4 Channelopathies. Cardiovasc Ther 2020: 6615038. 33381229
Amini, M., H. Wang, A. Belkacemi, M. Jung, A. Bertl, G. Schlenstedt, V. Flockerzi, and A. Beck. (2018). Identification of Inhibitory Ca Binding Sites in the Upper Vestibule of the Yeast Vacuolar TRP Channel. iScience 11: 1-12. [Epub: Ahead of Print] 30572205
Argudo, D., S. Capponi, N.P. Bethel, and M. Grabe. (2019). A multiscale model of mechanotransduction by the ankyrin chains of the NOMPC channel. J Gen Physiol. [Epub: Ahead of Print] 30728217
Arias-Darraz, L., D. Cabezas, C.K. Colenso, M. Alegría-Arcos, F. Bravo-Moraga, I. Varas-Concha, D.E. Almonacid, R. Madrid, and S. Brauchi. (2015). A transient receptor potential ion channel in Chlamydomonas shares key features with sensory transduction-associated TRP channels in mammals. Plant Cell 27: 177-188. 25595824
Aroke, E.N., K.L. Powell-Roach, R.B. Jaime-Lara, M. Tesfaye, A. Roy, P. Jackson, and P.V. Joseph. (2020). Taste the Pain: The Role of TRP Channels in Pain and Taste Perception. Int J Mol Sci 21:. 32824721
Autzen, H.E., A.G. Myasnikov, M.G. Campbell, D. Asarnow, D. Julius, and Y. Cheng. (2018). Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359: 228-232. 29217581
Aydar, E. and C.P. Palmer. (2009). Polycystic kidney disease channel and synaptotagmin homologues play roles in schizosaccharomyces pombe cell wall synthesis/repair and membrane protein trafficking. J. Membr. Biol. 229: 141-152. 19543678
Baez, D., N. Raddatz, G. Ferreira, C. Gonzalez, and R. Latorre. (2014). Gating of thermally activated channels. Curr Top Membr 74: 51-87. 25366233
Bähner, M., S. Frechter, N. Da Silva, B. Minke, R. Paulsen, and A. Huber. (2002). Light-regulated subcellular translocation of Drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron. 34: 83-93. 11931743
Bali, A., S.P. Schaefer, I. Trier, A.L. Zhang, L. Kabeche, and C.E. Paulsen. (2023). Molecular mechanism of hyperactivation conferred by a truncation of TRPA1. Nat Commun 14: 2867. 37208332
Barritt, G. and G. Rychkov. (2005). TRPs as mechanosensitive channels. Nat. Cell Biol. 7: 105-107. 15689975
Bautista D.M., J. Siemens, J.M. Glazer, P.R. Tsuruda, A.I. Basbaum, C.L. Stucky, S.E. Jordt, D. Julius. (2007). The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 448: 204-208. 17538622
Benemei, S., R. Patacchini, M. Trevisani, and P. Geppetti. (2015). TRP channels. Curr Opin Pharmacol 22: 18-23. 25725213
Bertamino, A., N. Iraci, C. Ostacolo, P. Ambrosino, S. Musella, V. Di Sarno, T. Ciaglia, G. Pepe, M. Sala, M.V. Soldovieri, I. Mosca, S. Gonzalez-Rodriguez, A. Fernandez-Carvajal, A. Ferrer-Montiel, E. Novellino, M. Taglialatela, P. Campiglia, and I. Gomez-Monterrey. (2018). Identification of a Potent Tryptophan-Based TRPM8 Antagonist With in Vivo Analgesic Activity. J Med Chem. [Epub: Ahead of Print] 29939028
Bhardwaj, R., S. Lindinger, A. Neuberger, K.D. Nadezhdin, A.K. Singh, M.R. Cunha, I. Derler, G. Gyimesi, J.L. Reymond, M.A. Hediger, C. Romanin, and A.I. Sobolevsky. (2020). Inactivation-mimicking block of the epithelial calcium channel TRPV6. Sci Adv 6:. 33246965
Bidaux, G., A.S. Borowiec, C. Dubois, P. Delcourt, C. Schulz, F.V. Abeele, G. Lepage, E. Desruelles, A. Bokhobza, E. Dewailly, C. Slomianny, M. Roudbaraki, L. Héliot, J.L. Bonnal, B. Mauroy, P. Mariot, L. Lemonnier, and N. Prevarskaya. (2016). Targeting of short TRPM8 isoforms induces 4TM-TRPM8-dependent apoptosis in prostate cancer cells. Oncotarget. [Epub: Ahead of Print] 27074561
Bidaux, G., D. Gordienko, G. Shapovalov, V. Farfariello, A.S. Borowiec, O. Iamshanova, L. Lemonnier, M. Gueguinou, R. Guibon, G. Fromont, M. Paillard, Y. Gouriou, C. Chouabe, E. Dewailly, D. Gkika, P. López-Alvarado, J. Carlos Menéndez, L. Héliot, C. Slomianny, and N. Prevarskaya. (2018). 4TM-TRPM8 channels are new gatekeepers of the ER-mitochondria Ca transfer. Biochim. Biophys. Acta. 1865: 981-994. 29678654
Bidaux, G., M. Sgobba, L. Lemonnier, A.S. Borowiec, L. Noyer, S. Jovanovic, A.V. Zholos, and S. Haider. (2015). Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel. Biophys. J. 109: 1840-1851. 26536261
BINET, L. (1960). [A rural center of medical biology]. Biol Med (Paris) 49: 165-177. 13800762
Binshtok, A.M., B.P. Bean, and C.J. Woolf. (2007). Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature. 449(7162):607-610. 17914397
Bohlen, C.J., A. Priel, S. Zhou, D. King, J. Siemens, and D. Julius. (2010). A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141: 834-845. 20510930
Brauchi, S. and P. Orio. (2011). Voltage sensing in thermo-TRP channels. Adv Exp Med Biol 704: 517-530. 21290314
Brizzi, A., S. Maramai, F. Aiello, M.C. Baratto, F. Corelli, C. Mugnaini, M. Paolino, F. Scorzelli, C. Aldinucci, L. De Petrocellis, C. Signorini, and F. Pessina. (2022). Lipoic/Capsaicin-Related Amides: Synthesis and Biological Characterization of New TRPV1 Agonists Endowed with Protective Properties against Oxidative Stress. Int J Mol Sci 23:. 36362364
Burks, S.R., R.M. Lorsung, M.E. Nagle, T.W. Tu, and J.A. Frank. (2019). Focused ultrasound activates voltage-gated calcium channels through depolarizing TRPC1 sodium currents in kidney and skeletal muscle. Theranostics 9: 5517-5531. 31534500
Cabezas-Bratesco D., Brauchi S., Gonzalez-Teuber V., Steinberg X., Valencia I. and Colenso C. (201). The Different Roles of The Channel-Kinases TRPM6 and TRPM7. Curr Med Chem. 22(25):2943-53. 26179995
Cabezas-Bratesco, D., F.A. Mcgee, C.K. Colenso, K. Zavala, D. Granata, V. Carnevale, J.C. Opazo, and S.E. Brauchi. (2022). Sequence and structural conservation reveal fingerprint residues in TRP channels. Elife 11:. 35686986
Caffrey M., Li D. and Dukkipati A. (2012). Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry. 51(32):6266-88. 22783824
Cai X., Srivastava S., Surindran S., Li Z. and Skolnik EY. (2014). Regulation of the epithelial Ca(2)(+) channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Mol Biol Cell. 25(8):1244-50. 24523290
Cai, R., X. Liu, R. Zhang, L. Hofmann, W. Zheng, M.R. Amin, L. Wang, Q. Hu, J.B. Peng, M. Michalak, V. Flockerzi, D.W. Ali, X.Z. Chen, and J. Tang. (2020). Autoinhibition of TRPV6 Channel and Regulation by PIP2. iScience 23: 101444. [Epub: Ahead of Print] 32829285
Callera, G.E., Y. He, A. Yogi, A.C. Montezano, T. Paravicini, G. Yao, and R.M. Touyz. (2009). Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens 27: 155-166. 19145781
Camacho Londoño, J.E., Q. Tian, K. Hammer, L. Schröder, J. Camacho Londoño, J.C. Reil, T. He, M. Oberhofer, S. Mannebach, I. Mathar, S.E. Philipp, W. Tabellion, F. Schweda, A. Dietrich, L. Kaestner, U. Laufs, L. Birnbaumer, V. Flockerzi, M. Freichel, and P. Lipp. (2015). A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J 36: 2257-2266. 26069213
Cao, E. (2020). Structural mechanisms of transient receptor potential ion channels. J Gen Physiol 152:. 31972006
Cao, E., M. Liao, Y. Cheng, and D. Julius. (2013). TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504: 113-118. 24305161
Caterina, M.J., M.A. Schumacher, M. Tominaga, T.A. Rosen, J. D. Levine, and D. Julius. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816-824. 9349813
Chandel, A., K.K. Das, and A.K. Bachhawat. (2016). Glutathione depletion activates the yeast vacuolar TRP channel, Yvc1p by reversible glutathionylation of specific cysteines. Mol. Biol. Cell. [Epub: Ahead of Print] 27708136
Chang Y., Schlenstedt G., Flockerzi V. and Beck A. (2010). Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1. FEBS Lett. 584(10):2028-32. 20035756
Chelaru, N.R., A. Chiosa, A. Sorop, A. Spiridon, F. Cojocaru, D. Domocos, D. Cucu, I. Popescu, and S.O. Dima. (2022). The Association between TRP Channels Expression and Clinicopathological Characteristics of Patients with Pancreatic Adenocarcinoma. Int J Mol Sci 23:. 36012311
Chen, J., X.F. Zhang, M.E. Kort, J.R. Huth, C. Sun, L.J. Miesbauer, S.C. Cassar, T. Neelands, V.E. Scott, R.B. Moreland, R.M. Reilly, P.J. Hajduk, P.R. Kym, C.W. Hutchins, and C.R. Faltynek. (2008). Molecular determinants of species-specific activation or blockade of TRPA1 channels. J. Neurosci. 28: 5063-5071. 18463259
Cheng Y., Nash H.A. (2007). Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus. Proc. Natl. Acad. Sci. U.S.A. 104: 17730-17734. 17968007
Cheng, K.T., X. Liu, H.L. Ong, and I.S. Ambudkar. (2008). Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J. Biol. Chem. 283: 12935-12940. 18326500
Chernov-Rogan, T., E. Gianti, C. Liu, E. Villemure, A.P. Cridland, X. Hu, E. Ballini, W. Lange, H. Deisemann, T. Li, S.I. Ward, D.H. Hackos, S. Magnuson, B. Safina, M.L. Klein, M. Volgraf, V. Carnevale, and J. Chen. (2019). TRPA1 modulation by piperidine carboxamides suggests an evolutionarily conserved binding site and gating mechanism. Proc. Natl. Acad. Sci. USA 116: 26008-26019. 31796582
Chou, M.Z., T. Mtui, Y.D. Gao, M. Kohler, and R.E. Middleton. (2004). Resiniferatoxin binds to the capsaicin receptor (TRPV1) near the extracellular side of the S4 transmembrane domain. Biochemistry 43: 2501-2511. 14992587
Chu, X., Q. Tong, J. Wozney, W. Zhang, J.Y. Cheung, K. Conrad, V. Mazack, R. Stahl, D.L. Barber, and B.A. Miller. (2005). Identification of an N-terminal TRPC2 splice variant which inhibits calcium influx. Cell Calcium 37: 173-182. 15589997
Chubanov, V., K.P. Schlingmann, J. Waring, J. Heinzinger, S. Kaske, S. Waldegger, M.M. Schnitzler, and T. Gudermann. (2007). Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J. Biol. Chem. 282: 7656-7667. 17197439
Chubanov, V., S. Waldegger, M.M. y Schnitzler, H. Vitzthum, M.C. Sassen, H.W. Seyberth, M. Konrad, and T. Gudermann. (2004). Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl. Acad. Sci. USA 101: 2894-2899. 14976260
Chyb, S., P. Raghu, and R.C. Hardie. (1999). Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397: 255-259. 9930700
Clapham D.E. (2007). SnapShot: mammalian TRP channels. Cell. 129: 220. 17418797
Clapham, D.E. (1996). TRP is cracked, but is CRAC TRP? Neuron 16: 1069-1072. 8663982
Clapham, D.E. (2003). TRP channels as cellular sensors. Nature 426: 517-524. 14654832
Clarke, A., K. Groschner, and T. Stockner. (2022). Exploring TRPC3 Interaction with Cholesterol through Coarse-Grained Molecular Dynamics Simulations. Biomolecules 12:. 35883446
Cruz-Torres, I., D.S. Backos, and P.S. Herson. (2020). Characterization and Optimization of the Novel Transient Receptor Potential Melastatin 2 Antagonist tatM2NX. Mol Pharmacol 97: 102-111. 31772034
Csanády, L. and B. Törocsik. (2009). Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol 133: 189-203. 19171771
D'hoedt, D., G. Owsianik, J. Prenen, M.P. Cuajungco, C. Grimm, S. Heller, T. Voets, and B. Nilius. (2008). Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J. Biol. Chem. 283(10): 6272-6280. 18174177
Damak, S., M. Rong, K. Yasumatsu, Z. Kokrashvili, C.A. Pérez, N. Shigemura, R. Yoshida, B. Mosinger, Jr, J.I. Glendinning, Y. Ninomiya, and R.F. Margolskee. (2006). Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 31: 253-264. 16436689
Damann, N., G. Bahrenberg, H. Stockhausen, C.J. Habermann, B. Lesch, R. Frank-Foltyn, J. Lee, J. Ann, and T. Christoph. (2020). In vitro characterization of the thermoneutral transient receptor potential vanilloid-1 (TRPV1) inhibitor GRTE16523. Eur J Pharmacol 871: 172934. 31954706
Demion, M., P. Bois, P. Launay, and R. Guinamard. (2007). TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73: 531-538. 17188667
Diver, M.M., Y. Cheng, and D. Julius. (2019). Structural insights into TRPM8 inhibition and desensitization. Science. [Epub: Ahead of Print] 31488702
Dodier, Y., U. Banderali, H. Klein, O. Topalak, O. Dafi, M. Simoes, G. Bernatchez, R. Sauvé, and L. Parent. (2004). Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis. J. Biol. Chem. 279: 6853-6862. 14630907
Dohke, Y., Y.S. Oh, I.S. Ambudkar, and R.J. Turner. (2004). Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1. J. Biol. Chem. 279: 12242-12248. 14707123
Donate-Macian P., Bano-Polo M., Vazquez-Ibar JL., Mingarro I. and Peralvarez-Marin A. (2015). Molecular and topological membrane folding determinants of transient receptor potential vanilloid 2 channel. Biochem Biophys Res Commun. 462(3):221-6. 25956061
Du, E.J., T.J. Ahn, I. Kwon, J.H. Lee, J.H. Park, S.H. Park, T.M. Kang, H. Cho, T.J. Kim, H.W. Kim, Y. Jun, H.J. Lee, Y.S. Lee, J.Y. Kwon, and K. Kang. (2016). TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway. PLoS Genet 12: e1005773. 26726767
Duan, J., J. Li, B. Zeng, G.L. Chen, X. Peng, Y. Zhang, J. Wang, D.E. Clapham, Z. Li, and J. Zhang. (2018). Structure of the mouse TRPC4 ion channel. Nat Commun 9: 3102. 30082700
Eigenbrod, O., K.Y. Debus, J. Reznick, N.C. Bennett, O. Sánchez-Carranza, D. Omerbašić, D.W. Hart, A.J. Barker, W. Zhong, H. Lutermann, J.V. Katandukila, G. Mgode, T.J. Park, and G.R. Lewin. (2019). Rapid molecular evolution of pain insensitivity in multiple African rodents. Science 364: 852-859. 31147513
Fan, C., W. Choi, W. Sun, J. Du, and W. Lu. (2018). Structure of the human lipid-gated cation channel TRPC3. Elife 7:. 29726814
Feng, Z., W. Li, A. Ward, B.J. Piggott, E.R. Larkspur, P.W. Sternberg, and X.Z. Xu. (2006). A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127: 621-633. 17081982
Fine, M., X. Li, and S. Dang. (2019). Structural insights into group II TRP channels. Cell Calcium 86: 102107. [Epub: Ahead of Print] 31841954
Fu, H., Z. Jiao, Y. Li, J. Tian, L. Ren, F. Zhang, Q. Li, and S. Liu. (2021). Transient Receptor Potential (TRP) Channels in the Pacific Oyster (): Genome-Wide Identification and Expression Profiling after Heat Stress between and. Int J Mol Sci 22:. 33810107
Gandhi, A., R. Kariyat, A. Harikishore, M. Ayati, A. Bhunia, and N. Sahoo. (2021). Deciphering the Role of Ion Channels in Early Defense Signaling against Herbivorous Insects. Cells 10:. 34571868
Gao, X., C.W. Kuo, A. Main, E. Brown, F.J. Rios, L.L. Camargo, S. Mary, K. Wypijewski, C. Gök, R.M. Touyz, and W. Fuller. (2022). Palmitoylation regulates cellular distribution of and transmembrane Ca flux through TrpM7. Cell Calcium 106: 102639. 36027648
García-Martínez, C., C. Morenilla-Palao, R. Planells-Cases, J.M. Merino, and A. Ferrer-Montiel. (2000). Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J. Biol. Chem. 275: 32552-32558. 10931826
García-Sanz, N., P. Valente, A. Gomis, A. Fernández-Carvajal, G. Fernández-Ballester, F. Viana, C. Belmonte, and A. Ferrer-Montiel. (2007). A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J. Neurosci. 27: 11641-11650. 17959807
Gavva, N.R., L. Klionsky, Y. Qu, L. Shi, R. Tamir, S. Edenson, T.J. Zhang, V.N. Viswanadhan, A. Toth, L.V. Pearce, T.W. Vanderah, F. Porreca, P.M. Blumberg, J. Lile, Y. Sun, K. Wild, J.C. Louis, and J.J. Treanor. (2004). Molecular determinants of vanilloid sensitivity in TRPV1. J. Biol. Chem. 279: 20283-20295. 14996838
Gawalska, A., M. Kołaczkowski, and A. Bucki. (2022). Structural Modeling of TRPA1 Ion Channel-Determination of the Binding Site for Antagonists. Molecules 27:. 35630553
Gevaert, T., J. Vriens, A. Segal, W. Everaerts, T. Roskams, K. Talavera, G. Owsianik, W. Liedtke, D. Daelemans, I. Dewachter, F. van Leuven, T. Voets, D. de Ridder, and B. Nilius. (2007). Deletion of the transient receptor potential cation channel TRPV4 (Trp12) impairs murine bladder voiding. J. Clin. Invest. 117(11): 3453-3462.
Ghata, J. and B.D. Cowley, Jr. (2017). Polycystic Kidney Disease. Compr Physiol 7: 945-975. 28640449
Gochman, A., X.F. Tan, C. Bae, H. Chen, K.J. Swartz, and A. Jara-Oseguera. (2023). Cannabidiol sensitizes TRPV2 channels to activation by 2-APB. Elife 12:. 37199723
Goetzl, E.J., V.H. Srihari, M. Mustapic, D. Kapogiannis, and G.R. Heninger. (2022). Abnormal levels of mitochondrial Ca channel proteins in plasma neuron-derived extracellular vesicles of early schizophrenia. FASEB J. 36: e22466. 35867070
Gopal, S., P. Søgaard, H.A. Multhaupt, C. Pataki, E. Okina, X. Xian, M.E. Pedersen, T. Stevens, O. Griesbeck, P.W. Park, R. Pocock, and J.R. Couchman. (2015). Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J. Cell Biol. 210: 1199-1211. 26391658
Groppi, S., F. Belotti, R.L. Brandão, E. Martegani, and R. Tisi. (2011). Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium 49: 376-386. 21511333
Gualdani, R., P. Gailly, J.H. Yuan, X. Yerna, G. Di Stefano, A. Truini, G. Cruccu, S.D. Dib-Hajj, and S.G. Waxman. (2022). A TRPM7 mutation linked to familial trigeminal neuralgia: Omega current and hyperexcitability of trigeminal ganglion neurons. Proc. Natl. Acad. Sci. USA 119: e2119630119. 36095216
Guo, C., X. Yang, H. Shi, C. Chen, Z. Hu, X. Zheng, X. Yang, and C. Xie. (2022). Identification of VdASP F2-interacting protein as a regulator of microsclerotial formation in Verticillium dahliae. Microb Biotechnol. [Epub: Ahead of Print] 35478269
Guo, J., J. She, W. Zeng, Q. Chen, X.C. Bai, and Y. Jiang. (2017). Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552: 205-209. 29211714
Guo, W. and L. Chen. (2019). Recent progress in structural studies on canonical TRP ion channels. Cell Calcium 83: 102075. [Epub: Ahead of Print] 31491644
Guo, W., Q. Tang, M. Wei, Y. Kang, J.X. Wu, and L. Chen. (2022). Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites. Neuron. [Epub: Ahead of Print] 35051376
Guo, Y., Y. Song, W. Liu, T. Wang, X. Ma, and Z. Yu. (2023). Novel Insights into the Role of Keratinocytes-Expressed TRPV3 in the Skin. Biomolecules 13:. 36979447
Hagmann, H., N.H. Khayyat, C. Oezel, A. Papadakis, A. Kuczkowski, T. Benzing, E. Gulbins, S. Dryer, and P.T. Brinkkoetter. (2022). Paraoxonase 2 (PON2) Deficiency Reproduces Lipid Alterations of Diabetic and Inflammatory Glomerular Disease and Affects TRPC6 Signaling. Cells 11:. 36429053
Hagmann, H., N.H. Khayyat, M. Matin, C. Oezel, H. Chen, A. Schauss, C. Schell, T. Benzing, S. Dryer, and P.T. Brinkkoetter. (2023). Capsazepine (CPZ) Inhibits TRPC6 Conductance and Is Protective in Adriamycin-Induced Nephropathy and Diabetic Glomerulopathy. Cells 12:. 36672207
Haladyna, J.N., T. Pastuer, S.S. Riedel, A.L. Perraud, and K.M. Bernt. (2016). Transient potential receptor melastatin-2 (Trpm2) does not influence murine MLL-AF9-driven AML leukemogenesis or in vitro response to chemotherapy. Exp Hematol. [Epub: Ahead of Print] 27033163
Hardie, R.C. and B. Minke. (1993). Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16: 371-376. 7694408
He, Y., G. Yao, C. Savoia, and R.M. Touyz. (2005). Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ Res 96: 207-215. 15591230
He, Z., C. Yang, D. Jiang, X. Wang, Z. Xing, S. Yu, Q. Yang, and L. Wang. (2022). The expression profile of a multi-stress inducible transient receptor potential vanilloid 4 (TRPV4) in Pacific oyster. Fish Shellfish Immunol Rep 3: 100064. 36419610
Held, K., F. Gruss, V.D. Aloi, A. Janssens, C. Ulens, T. Voets, and J. Vriens. (2018). Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. J. Physiol. [Epub: Ahead of Print] 29604058
Hellwig, N., N. Albrecht, C. Harteneck, G. Schultz, and M. Schaefer. (2005). Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118: 917-928. 15713749
Hilton, J.K., M. Kim, and W.D. Van Horn. (2019). Structural and Evolutionary Insights Point to Allosteric Regulation of TRP Ion Channels. Acc Chem Res. [Epub: Ahead of Print] 31149807
Hilton, J.K., T. Salehpour, N.J. Sisco, P. Rath, and W.D. Van Horn. (2018). Phosphoinositide-interacting regulator of TRP (PIRT) has opposing effects on human and mouse TRPM8 ion channels. J. Biol. Chem. [Epub: Ahead of Print] 29724821
Hoenderop, J.G., A.W. van der Kemp, A. Hartog, S.F. van de Graaf, C.H. van Os, P.H. Willems, and R.J. Bindels. (1999). Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J. Biol. Chem. 274: 8375-8378. 10085067
Hoenderop, J.G.J., T. Voets, S. Hoefs, F. Weidema, J. Prenen, B. Nilius, and R.J.M. Bindels. (2003). Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J. 22: 776-785. 12574114
Hofmann, L., H. Wang, A. Beck, U. Wissenbach, and V. Flockerzi. (2016). A conserved gating element in TRPV6 channels. Cell Calcium. [Epub: Ahead of Print] 28029385
Hofmann, L., H. Wang, W. Zheng, S.E. Philipp, P. Hidalgo, A. Cavalié, X.Z. Chen, A. Beck, and V. Flockerzi. (2017). The S4---S5 linker - gearbox of TRP channel gating. Cell Calcium. [Epub: Ahead of Print] 28416203
Hong, D.K., A.R. Kho, S.H. Lee, B.S. Kang, M.K. Park, B.Y. Choi, and S.W. Suh. (2023). Pathophysiological Roles of Transient Receptor Potential (Trp) Channels and Zinc Toxicity in Brain Disease. Int J Mol Sci 24:. 37047637
Hough, A., C. Criswell, A. Faruk, J.E. Cavanaugh, B.J. Kolber, and K.J. Tidgewell. (2023). Barbamide Displays Affinity for Membrane-Bound Receptors and Impacts Store-Operated Calcium Entry in Mouse Sensory Neuron.s. Mar Drugs 21:. 36827151
Huang, Y., B. Roth, W. Lü, and J. Du. (2019). Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. Elife 8:. 31513012
Huffer, K.E., A.A. Aleksandrova, A. Jara-Oseguera, L.R. Forrest, and K.J. Swartz. (2020). Global alignment and assessment of TRP channel transmembrane domain structures to explore functional mechanisms. Elife 9:. 32804077
Hughes, T.E., J.S. Del Rosario, A. Kapoor, A.T. Yazici, Y. Yudin, E.C. Fluck, 3rd, M. Filizola, T. Rohacs, and V.Y. Moiseenkova-Bell. (2019). Structure-based characterization of novel TRPV5 inhibitors. Elife 8:. 31647410
Iannone, L.F., R. Nassini, R. Patacchini, P. Geppetti, and F. De Logu. (2023). and non-neuronal TRPA1 as therapeutic targets for pain and headache relief. Temperature (Austin) 10: 50-66. 37187829
Inoue, K., D. Branigan, and Z.G. Xiong. (2010). Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J. Biol. Chem. 285: 7430-7439. 20048154
Ives, C.M., N.J. Thomson, and U. Zachariae. (2023). A cooperative knock-on mechanism underpins Ca2+-selective cation permeation in TRPV channels. J Gen Physiol 155:. 36943243
Jang, W., M. Oh, E.H. Cho, M. Baek, and C. Kim. (2023). Drosophila pain sensitization and modulation unveiled by a novel pain model and analgesic drugs. PLoS One 18: e0281874. 36795675
Jimenez, I., Y. Prado, F. Marchant, C. Otero, F. Eltit, C. Cabello-Verrugio, O. Cerda, and F. Simon. (2020). TRPM Channels in Human Diseases. Cells 9:. 33291725
Jin, P., D. Bulkley, Y. Guo, W. Zhang, Z. Guo, W. Huynh, S. Wu, S. Meltzer, T. Cheng, L.Y. Jan, Y.N. Jan, and Y. Cheng. (2017). Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547: 118-122. 28658211
Jirku, M., Z. Lansky, L. Bednarova, M. Sulc, L. Monincova, P. Majer, L. Vyklicky, J. Vondrasek, J. Teisinger, and K. Bousova. (2016). The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int J Biochem. Cell Biol. [Epub: Ahead of Print] 27435061
Jo, A.O., M. Lakk, A.M. Frye, T.T. Phuong, S.N. Redmon, R. Roberts, B.A. Berkowitz, O. Yarishkin, and D. Križaj. (2016). Differential volume regulation and calcium signaling in two ciliary body cell types is subserved by TRPV4 channels. Proc. Natl. Acad. Sci. USA 113: 3885-3890. 27006502
John Haynes, W., X.L. Zhou, Z.W. Su, S.H. Loukin, Y. Saimi, and C. Kung. (2008). Indole and other aromatic compounds activate the yeast TRPY1 channel. FEBS Lett. 582: 1514-1518. 18396169
Jordt, S.-E. and D. Julius. (2002). Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 108: 421-430. 11853675
Jordt, S.E., D.M. Bautista, H.H. Chuang, D.D. McKemy, P.M. Zygmunt, E.D. Hogestatt, I.D. Meng, and D. Julius. (2004). Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427: 260-265. 14712238
Jorgensen, C. and C. Domene. (2018). Location and Character of Volatile General Anesthetics Binding Sites in the Transmembrane Domain of TRPV1. Mol Pharm 15: 3920-3930. 30067911
Kádár, K., V. Juhász, A. Földes, R. Rácz, Y. Zhang, H. Löchli, E. Kató, L. Köles, M.C. Steward, P. DenBesten, G. Varga, and &.#.1.9.3.;. Zsembery. (2021). TRPM7-Mediated Calcium Transport in HAT-7 Ameloblasts. Int J Mol Sci 22:. 33924361
Kang, L., J. Gao, W.R. Schafer, Z. Xie, and X.Z. Xu. (2010). C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron. 67: 381-391. 20696377
Kashio, M., S. Masubuchi, and M. Tominaga. (2022). Protein kinase C-mediated phosphorylation of transient receptor potential melastatin type 2 Thr738 counteracts the effect of cytosolic Ca and elevates the temperature threshold. J. Physiol. [Epub: Ahead of Print] 36042566
Katz, B., T. Oberacker, D. Richter, H. Tzadok, M. Peters, B. Minke, and A. Huber. (2013). Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo. J Cell Sci 126: 3121-3133. 23687378
Kedei, N., T. Szabo, J.D. Lile, J.J. Treanor, Z. Olah, M.J. Iadarola, and P.M. Blumberg. (2001). Analysis of the native quaternary structure of vanilloid receptor 1. J. Biol. Chem. 276: 28613-28619. 11358970
Kelemen, B., E. Lisztes, A. Vladár, M. Hanyicska, J. Almássy, A. Oláh, A.G. Szöllősi, Z. Pénzes, J. Posta, T. Voets, T. Bíró, and B.I. Tóth. (2020). Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3). Biochem Pharmacol 174: 113826. 31987857
Kemp, B.J., D.L. Church, J. Hatzold, B. Conradt, and E.J. Lambie. (2009). Gem-1 encodes an SLC16 monocarboxylate transporter-related protein that functions in parallel to the gon-2 TRPM channel during gonad development in Caenorhabditis elegans. Genetics 181: 581-591. 19087963
Kim, J., Y.D. Chung, D. Park, S. Choi, D.W. Shin, H. Soh, H.W. Lee, W. Son, J. Yim, C.-S. Park, M.J. Kernan, and C. Kim. (2003). A TRPV family ion channel required for hearing in Drosophila. Nature 424: 81-82. 12819662
Kim, S.J., G.H. Park, D. Kim, J. Lee, H. Min, E. Wall, C.J. Lee, M.I. Simon, S.J. Lee, and S.K. Han. (2011). Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc. Natl. Acad. Sci. USA 108: 3371-3376. 21300878
Kim, S.J., Y.S. Kim, J.P. Yuan, R.S. Petralia, P.F. Worley, and D.J. Linden. (2003). Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426: 285-291. 14614461
Kiselyov, K., X. Xu, G. Mozhayeva, T. Kuo, I. Pessah, G. Mignery, X. Zhu, L. Birnbaumer, and S. Muallem. (1998). Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396: 478-482. 9853757
Knowles, H., J.W. Heizer, Y. Li, K. Chapman, C.A. Ogden, K. Andreasen, E. Shapland, G. Kucera, J. Mogan, J. Humann, L.L. Lenz, A.D. Morrison, and A.L. Perraud. (2011). Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 108: 11578-11583. 21709234
Ko, K.D., G. Bhardwaj, Y. Hong, G.S. Chang, K. Kiselyov, D.B. van Rossum, and R.L. Patterson. (2009). Phylogenetic profiles reveal structural/functional determinants of TRPC3 signal-sensing antennae. Commun Integr Biol 2: 133-137. 19704910
Kon, S., A. Takaku, F. Toyama, E. Takayama-Watanabe, and A. Watanabe. (2019). Acrosome reaction-inducing substance triggers two different pathways of sperm intracellular signaling in newt fertilization. Int J Dev Biol 63: 589-595. 32149368
Krapivinsky, G., L. Krapivinsky, Y. Manasian, and D.E. Clapham. (2014). The TRPM7 Chanzyme Is Cleaved to Release a Chromatin-Modifying Kinase. Cell 157: 1061-1072. 24855944
Kremeyer, B., F. Lopera, J.J. Cox, A. Momin, F. Rugiero, S. Marsh, C.G. Woods, N.G. Jones, K.J. Paterson, F.R. Fricker, A. Villegas, N. Acosta, N.G. Pineda-Trujillo, J.D. Ramírez, J. Zea, M.W. Burley, G. Bedoya, D.L. Bennett, J.N. Wood, and A. Ruiz-Linares. (2010). A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron. 66: 671-680. 20547126
Kühn, F.J., G. Knop, and A. Lückhoff. (2007). The transmembrane segment S6 determines cation versus anion selectivity of TRPM2 and TRPM8. J. Biol. Chem. 282: 27598-27609. 17604279
Kumar, A., A.K. Mishra, V. Singh, S. Yadav, A. Saxena, S.K. Garg, and D.K. Swain. (2019). Molecular and functional insights into Transient Receptor Potential Vanilloid 1 (TRPV1) in bull spermatozoa. Theriogenology 128: 207-217. 30784807
Kurganov, E., S. Saito, C.T. Saito, and M. Tominaga. (2017). Requirement of extracellular Ca2+ binding to specific amino acids for heat-evoked activation of TRPA1. J. Physiol. [Epub: Ahead of Print] 28194754
Lai, Y.H., W. Bäumer, C. Meneses, D.M. Roback, J.B. Robertson, S.K. Mishra, B.D.X. Lascelles, and M.W. Nolan. (2021). Irradiation of the Normal Murine Tongue Causes Upregulation and Activation of Transient Receptor Potential (TRP) Ion Channels. Radiat Res. [Epub: Ahead of Print] 34324688
Lambers, T.T., A.F. Weidema, B. Nilius, J.G. Hoenderop, and R.J. Bindels. (2004). Regulation of the mouse epithelial Ca2(+) channel TRPV6 by the Ca2+-sensor calmodulin. J. Biol. Chem. 279: 28855-28861. 15123711
Lan, L., H. Brereton, and G.J. Barritt. (1998). The role of calmodulin-binding sites in the regulation of the Drosophila TRPL cation channel expressed in Xenopus laevis oocytes by ca2+, inositol 1,4,5-trisphosphate and GTP-binding proteins. Biochem. J. 330(Pt3): 1149-1158. 9494079
Latorre, R., C. Zaelzer, and S. Brauchi. (2009). Structure-functional intimacies of transient receptor potential channels. Q. Rev. Biophys. 42: 201-246. 20025796
Launay, P., A. Fleig, A.-L. Perraud, A.M. Scharenberg, R. Penner, and J.-P. Kinet. (2002). TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109: 397-407. 12015988
Laursen, W.J., E.O. Anderson, L.J. Hoffstaetter, S.N. Bagriantsev, and E.O. Gracheva. (2015). Species-specific temperature sensitivity of TRPA1. Temperature (Austin) 2: 214-226. 27227025
Laursen, W.J., S.N. Bagriantsev, and E.O. Gracheva. (2014). TRPA1 channels: chemical and temperature sensitivity. Curr Top Membr 74: 89-112. 25366234
Lee, A.G. (2019). Interfacial Binding Sites for Cholesterol on TRP Ion Channels. Biophys. J. 117: 2020-2033. 31672270
Lee, G., J. Choi, Y.J. Nam, M.J. Song, J.K. Kim, W.J. Kim, P. Kim, J.S. Lee, S. Kim, K.T. No, J.H. Lee, J.K. Lee, and Y. Choi. (2019). Identification and characterization of saikosaponins as antagonists of transient receptor potential A1 channel. Phytother Res. [Epub: Ahead of Print] 31782210
Lee, Y., Y. Lee, J. Lee, S. Bang, S. Hyun, J. Kang, S.T. Hong, E. Bae, B.K. Kaang, and J. Kim. (2005). Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat. Genet. 37: 305-310. 15731759
Leffler, A., A. Lattrell, S. Kronewald, F. Niedermirtl, and C. Nau. (2011). Activation of TRPA1 by membrane permeable local anesthetics. Mol Pain 7: 62. 21861907
Leffler, A., M.J. Fischer, D. Rehner, S. Kienel, K. Kistner, S.K. Sauer, N.R. Gavva, P.W. Reeh, and C. Nau (2008). The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Cl- in Invest 118: 763-776. 18172555
Lei, M., P. Wang, H. Li, X. Liu, J. Shu, Q. Zhang, C. Cai, D. Li, and Y. Zhang. (2022). Case Report: Recurrent Hemiplegic Migraine Attacks Accompanied by Intractable Hypomagnesemia Due to a Gene Variant. Front Pediatr 10: 880242. 35712613
Li, L., C. Chen, C. Chiang, T. Xiao, Y. Chen, Y. Zhao, and D. Zheng. (2021). The Impact of TRPV1 on Cancer Pathogenesis and Therapy: A Systematic Review. Int J Biol Sci 17: 2034-2049. 34131404
Li, L., L. Ma, Z. Luo, X. Wei, Y. Zhao, C. Zhou, A. Mou, Z. Lu, M. You, C. He, H. Ma, Q. Zhou, L. Wang, T. Cao, Y. Gu, P. Gao, and Z. Zhu. (2022). Lack of TRPV1 aggravates obesity-associated hypertension through the disturbance of mitochondrial Ca2+ homeostasis in brown adipose tissue. Hypertens Res. [Epub: Ahead of Print] 35043013
Li, M., E. Liu, Q. Zhou, S. Li, X. Wang, Y. Liu, L. Wang, D. Sun, J. Ye, Y. Gao, X. Yang, J. Liu, Y. Yang, and J.Z. Wang. (2018). TRPC1 Null Exacerbates Memory Deficit and Apoptosis Induced by Amyloid-β. J Alzheimers Dis 63: 761-772. 29660945
Li, M., J. Du, J. Jiang, W. Ratzan, L.T. Su, L.W. Runnels, and L. Yue. (2007). Molecular Determinants of Mg2+ and Ca2+ Permeability and pH Sensitivity in TRPM6 and TRPM7. J. Biol. Chem. 282(35):25817-25830. 17599911
Li, W., Y. Ding, C. Smedley, Y. Wang, S. Chaudhari, L. Birnbaumer, and R. Ma. (2017). Increased glomerular filtration rate and impaired contractile function of mesangial cells in TRPC6 knockout mice. Sci Rep 7: 4145. 28646178
Liao, B.K., A.N. Deng, S.C. Chen, M.Y. Chou, and P.P. Hwang. (2007). Expression and water calcium dependence of calcium transporter isoforms in zebrafish gill mitochondrion-rich cells. BMC Genomics. 8: 354. 17915033
Liao, M., E. Cao, D. Julius, and Y. Cheng. (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504: 107-112. 24305160
Lichtenegger, M., T. Stockner, M. Poteser, H. Schleifer, D. Platzer, C. Romanin, and K. Groschner. (2013). A novel homology model of TRPC3 reveals allosteric coupling between gate and selectivity filter. Cell Calcium 54: 175-185. 23800762
Liedtke, W., Y. Choe, M.A. Martí-Renom, A.M. Bell, C.S. Denis, A. Sali, A.J. Hudspeth, J.M. Friedman and S. Heller (2000). Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103: 525-535. 11081638
Lindström, J.B., N.T. Pierce, and M.I. Latz. (2017). Role of TRP Channels in Dinoflagellate Mechanotransduction. Biol Bull 233: 151-167. 29373067
Liu X., K.T. Cheng, B.C. Bandyopadhyay, B. Pani, A. Dietrich, B.C. Paria, W.D. Swaim, D. Beech, E. Yildrim, B.B. Singh, L. Birnbaumer, I.S. Ambudkar. (2007a). Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(-/-) mice. Proc Natl Acad Sci U S A. 104: 17542-17547. 17956991
Liu, B. and F. Qin. (2021). Identification of a helix-turn-helix motif for high temperature dependence of vanilloid receptor TRPV2. J. Physiol. [Epub: Ahead of Print] 34605028
Liu, C., R. Miao, F. Raza, H. Qian, and X. Tian. (2023). Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain. Eur J Med Chem 245: 114893. 36395649
Liu, L., Y. Li, R. Wang, C. Yin, Q. Dong, H. Hing, C. Kim, and M.J. Welsh. (2007). Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450: 294-298. 17994098
Liu, Q., S. Li, Y. Qiu, J. Zhang, F.J. Rios, Z. Zou, and R.M. Touyz. (2023). Cardiovascular toxicity of tyrosine kinase inhibitors during cancer treatment: Potential involvement of TRPM7. Front Cardiovasc Med 10: 1002438. 36818331
Liu, S., C. Guo, Z. Dang, and X. Liang. (2016). Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. Ecotoxicol Environ Saf 137: 256-264. [Epub: Ahead of Print] 27984820
Liu, X., B.B. Singh, and I.S. Ambudkar. (2003). TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J. Biol. Chem. 278: 11337-11343. 12536150
Liu, X., B.C. Bandyopadhyay, B.B. Singh, K. Groschner, and I.S. Ambudkar. (2005). Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J. Biol. Chem. 280: 21600-21606. 15834157
Loukin, S., Z. Su, X. Zhou, and C. Kung. (2010). Forward genetic analysis reveals multiple gating mechanisms of TRPV4. J. Biol. Chem. 285: 19884-19890. 20424166
Luo, J. and H. Hu. (2014). Thermally activated TRPV3 channels. Curr Top Membr 74: 325-364. 25366242
Luo, Y., S. Chen, F. Wu, C. Jiang, and M. Fang. (2022). The identification of the key residues E829 and R845 involved in transient receptor potential melastatin 2 channel gating. Front Aging Neurosci 14: 1033434. 36353687
Ma, H.T., Z. Peng, T. Hiragun, S. Iwaki, A.M. Gilfillan, and M.A. Beaven. (2008). Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. J. Immunol. 180: 2233-2239. 18250430
Ma, Y., R. Sugiura, A. Koike, H. Ebina, S.O. Sio, and T. Kuno. (2011). Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One 6: e22421. 21811607
Mack, K. and M.J.M. Fischer. (2017). Disrupting sensitization of TRPV4. Neuroscience 352: 1-8. [Epub: Ahead of Print] 28372987
Macpherson, L.J., A.E. Dubin, M.J. Evans, F. Marr, P.G. Schultz, B.F. Cravatt, and A. Patapoutian. (2007). Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445: 541-545. 17237762
Madej, M.G. and C.M. Ziegler. (2018). Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch 470: 213-225. 29344776
Mahmuda, N.A., S. Yokoyama, T. Munesue, K. Hayashi, K. Yagi, C. Tsuji, and H. Higashida. (2020). One Single Nucleotide Polymorphism of the Channel Gene Identified as a Risk Factor in Bipolar Disorder Associates with Autism Spectrum Disorder in a Japanese Population. Diseases 8:. 32046066
Mammadova-Bach, E., M. Nagy, J.W.M. Heemskerk, B. Nieswandt, and A. Braun. (2019). Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium 77: 39-48. 30530092
Mao, F., L. Guo, M. Jin, X.M. Qiao, G.Y. Ye, and J. Huang. (2018). Molecular cloning and characterization of TRPVs in two rice pests: Nilaparvata lugens (Stål) and Nephotettix cincticeps (Uhler). Pest Manag Sci. [Epub: Ahead of Print] 30370997
Maruyama, Y., T. Ogura, K. Mio, S. Kiyonaka, K. Kato, Y. Mori, and C. Sato. (2007). Three-dimensional Reconstruction Using Transmission Electron Microscopy Reveals a Swollen, Bell-shaped Structure of Transient Receptor Potential Melastatin Type 2 Cation Channel. J. Biol. Chem. 282: 36961-36970. 17940282
Matta, J.A. and G.P. Ahern. (2007). Voltage is a partial activator of rat thermosensitive TRP channels. J. Physiol. 585(Pt 2):469-482. 17932142
Matta, J.A., P.M. Cornett, R.L. Miyares, K. Abe, N. Sahibzada, and G.P. Ahern. (2008). General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc. Natl. Acad. Sci. USA 105: 8784-8789. 18574153
McCleskey E.W. and M.S. Gold. (1999). Ion channels of nociception. Annu. Rev. Physiol. 61: 835-856. 10099712
McGoldrick, L.L., A.K. Singh, K. Saotome, M.V. Yelshanskaya, E.C. Twomey, R.A. Grassucci, and A.I. Sobolevsky. (2017). Opening of the human epithelial calcium channel TRPV6. Nature. [Epub: Ahead of Print] 29258289
Mederos y Schnitzler, M., J. Wäring, T. Gudermann, and V. Chubanov. (2008). Evolutionary determinants of divergent calcium selectivity of TRPM channels. FASEB J. 22(5): 1540-1551. 18073331
Memon, T., O. Yarishkin, C.A. Reilly, D. Krizaj, B.M. Olivera, and R.W. Teichert. (2019). trans-Anethole of Fennel oil is a selective and non-electrophilic agonist of the TRPA1 ion channel. Mol Pharmacol. [Epub: Ahead of Print] 30679204
Méndez-Reséndiz, K.A., &.#.2.1.1.;. Enciso-Pablo, R. González-Ramírez, R. Juárez-Contreras, T. Rosenbaum, and S.L. Morales-Lázaro. (2020). Steroids and TRP Channels: A Close Relationship. Int J Mol Sci 21:. 32471309
Mercado, J., A. Gordon-Shaag, W.N. Zagotta, and S.E. Gordon. (2010). Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 30: 13338-13347. 20926660
Minke, B. and B. Cook. (2002). TRP channel proteins and signal transduction. Physiol. Rev. 82: 429-472. 11917094
Mio, K., T. Ogura, and C. Sato. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J Synchrotron Radiat 15: 211-214. 18421141
Mio, K., T. Ogura, S. Kiyonaka, Y. Hiroaki, Y. Tanimura, Y. Fujiyoshi, Y. Mori, and C. Sato. (2007). The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J. Mol. Biol. 367: 373-383. 17258231
Moiseenkova-Bell, V.Y., L.A. Stanciu, I.I. Serysheva, B.J. Tobe, and T.G. Wensel. (2008). Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 105: 7451-7455. 18490661
Montell, C. (2005). The TRP superfamily of cation channels. Science STKE 272: 1-24. 15728426
Montell, C. and G.M. Rubin. (1989). Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2: 1313-1323. 2516726
Montell, C., L. Birnbaumer, and V. Flockerzi. (2002). The TRP channels, a remarkably functional family. Cell 108: 595-598. 11893331
Moparthi, L., S. Kjellström, P. Kjellbom, M.R. Filipovic, P.M. Zygmunt, and U. Johanson. (2020). Electrophile-Induced Conformational Switch of the Human TRPA1 Ion Channel Detected by Mass Spectrometry. Int J Mol Sci 21:. 32933054
Moparthi, L., V. Sinica, V.K. Moparthi, M. Kreir, T. Vignane, M.R. Filipovic, V. Vlachova, and P.M. Zygmunt. (2022). The human TRPA1 intrinsic cold and heat sensitivity involves separate channel structures beyond the N-ARD domain. Nat Commun 13: 6113. 36253390
Morris, Z., D. Sinha, A. Poddar, B. Morris, and Q. Chen. (2019). Fission yeast TRP channel Pkd2p localizes to the cleavage furrow and regulates cell separation during cytokinesis. Mol. Biol. Cell 30: 1791-1804. 31116668
Motter, A.L. and G.P. Ahern. (2012). TRPA1 Is a Polyunsaturated Fatty Acid Sensor in Mammals. PLoS One 7: e38439. 22723860
Moussaieff, A., N. Rimmerman, T. Bregman, A. Straiker, C.C. Felder, S. Shoham, Y. Kashman, S.M. Huang, H. Lee, E. Shohami, K. Mackie, M.J. Caterina, J.M. Walker, E. Fride, and R. Mechoulam. (2008). Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J. 22: 3024-3034. 18492727
Mukerji, N., T.V. Damodaran, and M.P. Winn. (2007). TRPC6 and FSGS: the latest TRP channelopathy. Biochim. Biophys. Acta. 1772: 859-868. 17459670
Mulukala, S.K.N., S.S. Irukuvajjula, K. Kumar, K. Garai, P. Venkatesu, R. Vadrevu, and A.K. Pasupulati. (2020). Structural features and oligomeric nature of human podocin domain. Biochem Biophys Rep 23: 100774. 32617419
Murillo-Rodriguez, E., J.C. Pastrana-Trejo, M. Salas-Crisóstomo, and M. de-la-Cruz. (2017). The endocannabinoid system modulating levels of consciousness, emotions and likely dream contents. CNS Neurol Disord Drug Targets. [Epub: Ahead of Print] 28240187
Nadezhdin, K.D., L. Correia, C. Narangoda, D.S. Patel, A. Neuberger, T. Gudermann, M.G. Kurnikova, V. Chubanov, and A.I. Sobolevsky. (2023). Structural mechanisms of TRPM7 activation and inhibition. Nat Commun 14: 2639. 37156763
Nadler, M.J.S., M.C. Hermosura, K. Inabe, A.-L. Perraud, Q. Zhu, A.J. Stokes, T. Kurosaki, J.-P. Kinet, R. Penner, A.M. Scharenberg, and A. Fleig. (2001). LTRPC7 is a Mg·ATP-regulated divalent cation channel required for cell viability. Nature 411: 590-594. 11385574
Neuberger, A., K.D. Nadezhdin, E. Zakharian, and A.I. Sobolevsky. (2021). Structural mechanism of TRPV3 channel inhibition by the plant-derived coumarin osthole. EMBO Rep e53233. [Epub: Ahead of Print] 34472684
Neuberger, A., Y.A. Trofimov, M.V. Yelshanskaya, K.D. Nadezhdin, N.A. Krylov, R.G. Efremov, and A.I. Sobolevsky. (2023). Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein. Nat Commun 14: 2659. 37160865
Nilius, B., R. Vennekens, J. Prenen, J.G. Hoenderop, G. Droogmans, and R.J. Bindels. (2001). The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J. Biol. Chem. 276: 1020-1025. 11035011
Nonaka, K., X. Han, H. Kato, H. Sato, H. Yamaza, Y. Hirofuji, and K. Masuda. (2019). Novel gain-of-function mutation of associated with accelerated chondrogenic differentiation of dental pulp stem cells derived from a patient with metatropic dysplasia. Biochem Biophys Rep 19: 100648. 31463371
Noroozbabaee, L., P.J. Blanco, S. Safaei, and D.P. Nickerson. (2022). A modular and reusable model of epithelial transport in the proximal convoluted tubule. PLoS One 17: e0275837. 36355848
Numata, T. and Y. Okada. (2008). Proton Conductivity through the Human TRPM7 Channel and Its Molecular Determinants. J. Biol. Chem. 283: 15097-15103. 18390554
Ogawa, Y., L. Zhou, S. Kaneko, and Y. Kusakabe. (2022). Agonistic/antagonistic properties of lactones in food flavors on the sensory ion channels TRPV1 and TRPA1. Chem Senses 47:. 36374622
Ohara, K., T. Fukuda, H. Okada, S. Kitao, Y. Ishida, K. Kato, C. Takahashi, M. Katayama, K. Uchida, and M. Tominaga. (2015). Identification of Significant Amino Acids in Multiple Transmembrane Domains of Human Transient Receptor Potential Ankyrin 1 (TRPA1) for Activation by Eudesmol, an Oxygenized Sesquiterpene in Hop Essential Oil. J. Biol. Chem. 290: 3161-3171. 25525269
Okumura, R., K. Shima, T. Muramatsu, K. Nakagawa, M. Shimono, T. Suzuki, H. Magloire, and Y. Shibukawa. (2005). The odontoblast as a sensory receptor cell? The expression of TRPV1 (VR-1) channels. Arch Histol Cytol 68: 251-257. 16477145
Olah, Z., L. Karai, and M.J. Iadarola. (2001). Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. J. Biol. Chem. 276: 31163-31170. 11333266
Pabon, J., M.K. Law, and A. August. (2017). Drebrin Regulation of Calcium Signaling in Immune Cells. Adv Exp Med Biol 1006: 281-290. 28865026
Park, J.Y., E.M. Hwang, O. Yarishkin, J.H. Seo, E. Kim, J. Yoo, G.S. Yi, D.G. Kim, N. Park, C.M. Ha, J.H. La, D. Kang, J. Han, U. Oh, and S.G. Hong. (2008). TRPM4b channel suppresses store-operated Ca2+ entry by a novel protein-protein interaction with the TRPC3 channel. Biochem. Biophys. Res. Commun. 368: 677-683. 18262493
Parrasia, S., A. Mattarei, A. Furlan, M. Zoratti, and L. Biasutto. (2019). Small-Molecule Modulators of Mitochondrial Channels as Chemotherapeutic Agents. Cell Physiol Biochem 53: 11-43. 31834993
Peier, A.M., A. Moqrich, A.C. Hergarden, A.J. Reeve, D.A. Andersson, G.M. Story, T.J. Earley, I Dragoni, P. McIntyre, S. Bevan, and A. Patapoutian. (2002). A TRP channel that senses cold stimuli and menthol. Cell 108: 705-715. 11893340
Peng, C., Z. Yang, Z. Liu, S. Wang, H. Yu, C. Cui, Y. Hu, Q. Xing, J. Hu, X. Huang, and Z. Bao. (2021). A Systematical Survey on the TRP Channels Provides New Insight into Its Functional Diversity in Zhikong Scallop (). Int J Mol Sci 22:. 34681735
Peng, J.B., X.Z. Chen, U.V. Berger, P.M. Vassilev, H. Tsukaguchi, E.M. Brown, and M.A. Hediger. (1999). Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J. Biol. Chem. 274: 22739-22746. 10428857
Pereira, G.C., E. Piton, J. Bornholdt, B.M. Dos Santos, A.S. de Almeida, D.P. Dalenogare, M.F.P. Fialho, G. Becker, E. da Silva Brum, T.B. Sampaio, S.M. Oliveira, M.S. Oliveira, G. Trevisan, and G.V. Bochi. (2023). TRPA1 participation in behavioral impairment induced by chronic corticosterone administration. Psychopharmacology (Berl) 240: 157-169. 36520197
Perraud, A.-L., A. Fleig, C.A. Dunn, L.A. Bagley, P. Launay, C. Schmitz, A.J. Stokes, Q. Zhu, M.J. Bessman, R. Penner, J.-P. Kinet, and A.M. Scharenberg. (2001). ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411: 594-599. 11385575
Pertusa, M., B. Rivera, A. González, G. Ugarte, and R. Madrid. (2018). Critical role of the pore domain in the cold response of TRPM8 channels identified by ortholog functional comparison. J. Biol. Chem. 293: 12454-12471. 29880642
Peters, F., J. Kopp, J. Fischer, and I. Tantcheva-Poór. (2020). Mutation in TRPV3 causes painful focal plantar keratoderma. J Eur Acad Dermatol Venereol. [Epub: Ahead of Print] 32314439
Phelps, C.B., R.J. Huang, P.V. Lishko, R.R. Wang, and R. Gaudet (2008). Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47: 2476-2484. 18232717
Prawitt, D., M.K. Monteilh-Zoller, L. Brixel, C. Spangenberg, B. Zabel, A. Fleig, and R. Penner. (2003). TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc. Natl. Acad. Sci. USA 100: 15166-15171. 14634208
Prawitt, D., T. Enklaar, G. Klemm, B. Gärtner, C. Spangenberg, A. Winterpacht, M. Higgins, J. Pelletier, and B. Zabel. (2000). Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum Mol Genet 9: 203-216. 10607831
Premkumar, L.S. (2001). Interaction between vanilloid receptors and purinergic metabotropic receptors: pain perception and beyond. Proc. Natl. Acad. Sci. USA 98: 6537-6539. 11390988
Putney, J.W., Jr. and R.R. McKay. (1999). Capacitative calcium entry channels. BioEssays 21: 38-46. 10070252
Qiu, A. and C. Hogstrand. (2004). Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes. Gene 342: 113-123. 15527971
Ramsey, I.S., M. Delling, and D.E. Clapham. ((2006)). An introduction to TRP channels. Annu. Rev. Physiol. 68: 619–647. 16460286
Riehle, M., D. Tsvetkov, B.O. Gohlke, R. Preissner, C. Harteneck, M. Gollasch, and B. Nürnberg. (2018). Molecular basis for the sensitivity of TRP channels to polyunsaturated fatty acids. Naunyn Schmiedebergs Arch Pharmacol. [Epub: Ahead of Print] 29736621
Riera, C.E., M.O. Huising, P. Follett, M. Leblanc, J. Halloran, R. Van Andel, C.D. de Magalhaes Filho, C. Merkwirth, and A. Dillin. (2014). TRPV1 Pain Receptors Regulate Longevity and Metabolism by Neuropeptide Signaling. Cell 157: 1023-1036. 24855942
Rish, A.D., Z. Shen, and T.M. Fu. (2022). It takes two to Tango: Two gates orchestrate the opening of human TRPM2. Cell Calcium 101: 102523. 34973600
Rixecker, T., I. Mathar, R. Medert, S. Mannebach, A. Pfeifer, P. Lipp, V. Tsvilovskyy, and M. Freichel. (2016). TRPM4-mediated control of FcεRI-evoked Ca2+ elevation comprises enhanced plasmalemmal trafficking of TRPM4 channels in connective tissue type mast cells. Sci Rep 6: 32981. 27624684
Rock, M.J., J. Prenen, V.A. Funari, T.L. Funari, B. Merriman, S.F. Nelson, R.S. Lachman, W.R. Wilcox, S. Reyno, R. Quadrelli, A. Vaglio, G. Owsianik, A. Janssens, T. Voets, S. Ikegawa, T. Nagai, D.L. Rimoin, B. Nilius, and D.H. Cohn. (2008). Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat. Genet. 40: 999-1003. 18587396
Roessingh, S., W. Wolfgang, and R. Stanewsky. (2015). Loss of Drosophila melanogaster TRPA1 Function Affects "Siesta" Behavior but Not Synchronization to Temperature Cycles. J Biol Rhythms 30: 492-505. 26459465
Ruan, Z., E. Haley, I.J. Orozco, M. Sabat, R. Myers, R. Roth, J. Du, and W. Lü. (2021). Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Nat Struct Mol Biol 28: 604-613. 34168372
Runnels, L.W., L. Yue, and D.E. Clapham. (2001). TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291: 1043-1046. 11161216
Saldías, M.P., P. Cruz, I. Silva, O. Orellana-Serradell, B. Lavanderos, D. Maureira, R. Pinto, and O. Cerda. (2023). The Cytoplasmic Region of SARAF Reduces Triple-Negative Breast Cancer Metastasis through the Regulation of Store-Operated Calcium Entry. Int J Mol Sci 24:. 36982380
Saotome, K., A.K. Singh, M.V. Yelshanskaya, and A.I. Sobolevsky. (2016). Crystal structure of the epithelial calcium channel TRPV6. Nature. [Epub: Ahead of Print] 27296226
Saqib, U., S. Munjuluri, S. Sarkar, S. Biswas, O. Mukherjee, H. Satsangi, M.S. Baig, A.G. Obukhov, and K. Hajela. (2023). Transient Receptor Potential Canonical 6 (TRPC6) Channel in the Pathogenesis of Diseases: A Jack of Many Trades. Inflammation 1-17. [Epub: Ahead of Print] 37072606
Schäffers, O.J.M., J.G.J. Hoenderop, R.J.M. Bindels, and J.H.F. de Baaij. (2018). The rise and fall of novel renal magnesium transporters. Am. J. Physiol. Renal Physiol 314: F1027-F1033. 29412701
Schindl, R. and C. Romanin. (2007). Assembly domains in TRP channels. Biochem Soc Trans 35: 84-85. 17233607
Schmitz, C., F. Deason, and A.L. Perraud. (2007). Molecular components of vertebrate Mg2+-homeostasis regulation. Magnes. Res. 20: 6-18. 17536484
Schoeber, J.P., C.N. Topala, X. Wang, R.J. Diepens, T.T. Lambers, J.G. Hoenderop, and R.J. Bindels. (2006). RGS2 inhibits the epithelial Ca2+ channel TRPV6. J. Biol. Chem. 281: 29669-29674. 16895908
Seebohm, G. and J.A. Schreiber. (2021). Beyond Hot and Spicy: TRPV Channels and their Pharmacological Modulation. Cell Physiol Biochem 55: 108-130. 34043299
Shannon, A.H., C.T. Elder, G. Lu, G. Su, A. Mast, M.D. Salmon, W.G. Montgomery, M.D. Spinosa, G.R. Upchurch, Jr, and A.K. Sharma. (2020). Pharmacologic inhibition of transient receptor channel vanilloid 4 attenuates abdominal aortic aneurysm formation. FASEB J. [Epub: Ahead of Print] 32506673
Sidi, S., R.W. Friedrich, and T. Nicolson. (2003). NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301: 96-99. 12805553
Sierra-Valdez, F., C.M. Azumaya, L.O. Romero, T. Nakagawa, and J.F. Cordero-Morales. (2018). Structure-function analyses of the ion channel TRPC3 reveal that its cytoplasmic domain allosterically modulates channel gating. J. Biol. Chem. [Epub: Ahead of Print] 30139744
Simard C., Hof T., Keddache Z., Launay P. and Guinamard R. (2013). The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol. 59:11-9. 23416167
Singaravelu, G., I. Chatterjee, S. Rahimi, M.K. Druzhinina, L. Kang, X.Z. Xu, and A. Singson. (2012). The sperm surface localization of the TRP-3/SPE-41 Ca2+ -permeable channel depends on SPE-38 function in Caenorhabditis elegans. Dev Biol 365: 376-383. 22425620
Singh, A.K., K. Saotome, and A.I. Sobolevsky. (2017). Swapping of transmembrane domains in the epithelial calcium channel TRPV6. Sci Rep 7: 10669. 28878326
Singh, A.K., K. Saotome, L.L. McGoldrick, and A.I. Sobolevsky. (2018). Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB. Nat Commun 9: 2465. 29941865
Sonkusare, S.K., A.D. Bonev, J. Ledoux, W. Liedtke, M.I. Kotlikoff, T.J. Heppner, D.C. Hill-Eubanks, and M.T. Nelson. (2012). Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597-601. 22556255
Souza Bomfim, G.H., V. Costiniti, Y. Li, Y. Idaghdour, and R.S. Lacruz. (2020). TRPM7 activation potentiates SOCE in enamel cells but requires ORAI. Cell Calcium 87: 102187. [Epub: Ahead of Print] 32146159
Starkus, J.G., A. Fleig, and R. Penner. (2010). The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J. Physiol. 588: 1227-1240. 20194125
Startek, J.B., B. Boonen, A. López-Requena, A. Talavera, Y.A. Alpizar, D. Ghosh, N. Van Ranst, B. Nilius, T. Voets, and K. Talavera. (2019). Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. Elife 8:. 31184584
Stokes, A.J., C. Wakano, K.A. Del Carmen, M. Koblan-Huberson, and H. Turner. (2005). Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2. J. Cell. Biochem. 94: 669-683. 15547947
Story, G.M., A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, and A. Patapoutian. (2003). ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819-829. 12654248
Studer, M. and P.A. McNaughton. (2010). Modulation of single-channel properties of TRPV1 by phosphorylation. J. Physiol. 588: 3743-3756. 20693293
Stumpf, T., Q. Zhang, D. Hirnet, U. Lewandrowski, A. Sickmann, U. Wissenbach, J. Dörr, C. Lohr, J.W. Deitmer, and C. Fecher-Trost. (2008). The human TRPV6 channel protein is associated with cyclophilin B in human placenta. J. Biol. Chem. 283: 18086-18098. 18445599
Suresh K., Servinsky L., Reyes J., Baksh S., Undem C., Caterina M., Pearse DB. and Shimoda LA. (2015). Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4. Am J Physiol Lung Cell Mol Physiol. 309(12):L1467-77. 26453519
Suzuki, M., J. Sato, K. Kutsuwada, G. Ooki, and M. Imai. (1999). Cloning of a stretch-inhibitable nonselective cation channel. J. Biol. Chem. 274: 6330-6335. 10037722
Suzuki, Y., D. Chitayat, H. Sawada, M.A. Deardorff, H.M. McLaughlin, A. Begtrup, K. Millar, J. Harrington, K. Chong, M. Roifman, K. Grand, M. Tominaga, F. Takada, S. Shuster, M. Obara, H. Mutoh, R. Kushima, and G. Nishimura. (2018). TRPV6 Variants Interfere with Maternal-Fetal Calcium Transport through the Placenta and Cause Transient Neonatal Hyperparathyroidism. Am J Hum Genet 102: 1104-1114. 29861107
Suzuki, Y., H. Sawada, T. Tokumasu, S. Suzuki, S. Ninomiya, M. Shirai, T. Mukai, C.T. Saito, G. Nishimura, and M. Tominaga. (2020). Novel TRPV6 mutations in the spectrum of transient neonatal hyperparathyroidism. J. Physiol. Sci 70: 33. 32646367
Szabó, T., L. Ambrus, N. Zákány, G. Balla, and T. Bíró. (2015). Regulation of TRPC6 ion channels in podocytes - Implications for focal segmental glomerulosclerosis and acquired forms of proteinuric diseases. Acta Physiol Hung 102: 241-251. 26551740
Taga, A., M.A. Peyton, B. Goretzki, T.Q. Gallagher, A. Ritter, A. Harper, T.O. Crawford, U.A. Hellmich, C.J. Sumner, and B.A. McCray. (2022). TRPV4 mutations causing mixed neuropathy and skeletal phenotypes result in severe gain of function. Ann Clin Transl Neurol. [Epub: Ahead of Print] 35170874
Takahashi, K., K. Araki, H. Miyamoto, R. Shirakawa, T. Yoshida, and M. Wakamori. (2021). Capsaicin and Proton Differently Modulate Activation Kinetics of Mouse Transient Receptor Potential Vanilloid-1 Channel Induced by Depolarization. Front Pharmacol 12: 672157. 34093200
Tang, Q., W. Guo, L. Zheng, J.X. Wu, M. Liu, X. Zhou, X. Zhang, and L. Chen. (2018). Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Res. [Epub: Ahead of Print] 29700422
Tedeschi, V., M.J. Sisalli, A. Pannaccione, I. Piccialli, P. Molinaro, L. Annunziato, and A. Secondo. (2022). Na/Ca exchanger isoform 1 (NCX1) and canonical transient receptor potential channel 6 (TRPC6) are recruited by STIM1 to mediate Store-Operated Calcium Entry in primary cortical neurons. Cell Calcium 101: 102525. 34995919
Thébault, S., G. Cao, H. Venselaar, Q. Xi, R.J. Bindels, and J.G. Hoenderop. (2008). Role of the α-kinase domain in transient receptor potential melastatin 6 channel and regulation by intracellular ATP. J. Biol. Chem. 283: 19999-20007. 18490453
Thompson, V., M. Moshirfar, T. Clinch, S. Scoper, S.H. Linn, A. McIntosh, Y. Li, M. Eaton, M. Ferriere, and K. Stasi. (2023). Topical Ocular TRPV1 Antagonist SAF312 (Libvatrep) for Postoperative Pain After Photorefractive Keratectomy. Transl Vis Sci Technol 12: 7. 36917119
Toft-Bertelsen, T.L., D. Krízaj, and N. MacAulay. (2017). When size matters: transient receptor potential vanilloid 4 channel as a volume-sensor rather than an osmo-sensor. J. Physiol. [Epub: Ahead of Print] 28295351
Ton, H.T., T.X. Phan, A.M. Abramyan, L. Shi, and G.P. Ahern. (2017). Identification of a putative binding site critical for general anesthetic activation of TRPA1. Proc. Natl. Acad. Sci. USA 114: 3762-3767. 28320952
Topala, C.N., W.T. Groenestege, S. Thébault, D. van den Berg, B. Nilius, J.G. Hoenderop, and R.J. Bindels. (2007). Molecular determinants of permeation through the cation channel TRPM6. Cell Calcium 41: 513-523. 17098283
Tóth, B. and L. Csanády. (2012). Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc. Natl. Acad. Sci. USA 109: 13440-13445. 22847436
Tousova, K., K. Susankova, J. Teisinger, L. Vyklicky, and V. Vlachova. (2004). Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1. Neuropharmacology 47: 273-285. 15223306
Trofimov, Y.A., N.A. Krylov, and R.G. Efremov. (2019). Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel. Int J Mol Sci 20:. 31480555
Tseng, H.H., C.T. Vong, Y.W. Kwan, S.M. Lee, and M.P. Hoi. (2016). TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells. Sci Rep 6: 35016. 27731349
Tseng, W.C., D.C. Pryde, K.E. Yoger, K.M. Padilla, B.M. Antonio, S. Han, V. Shanmugasundaram, and A.C. Gerlach. (2018). TRPA1 ankyrin repeat six interacts with a small molecule inhibitor chemotype. Proc. Natl. Acad. Sci. USA 115: 12301-12306. 30429323
van de Graaf, S.F.J., J.G.J. Hoenderop, D. Gkika, D. Lamers, J. Prenen, U. Rescher, V. Gerke, O. Staub, B. Nilius, and R.J.M. Bindels. (2003). Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J. 22: 1478-1487. 12660155
van Krugten, J., N. Danné, and E.J.G. Peterman. (2022). A local interplay between diffusion and intraflagellar transport distributes TRPV-channel OCR-2 along C. elegans chemosensory cilia. Commun Biol 5: 720. 35858995
Vanden Abeele, F., A. Zholos, G. Bidaux, Y. Shuba, S. Thebault, B. Beck, M. Flourakis, Y. Panchin, R. Skryma, and N. Prevarskaya. (2006). Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J. Biol. Chem. 281: 40174-40182. 17082190
Vennekens, R., A. Menigoz, and B. Nilius. (2012). TRPs in the Brain. Rev Physiol Biochem Pharmacol 163: 27-64. 23184016
Viswanath, V., G.M. Story, A.M. Peier, M.J. Petrus, V.M. Lee, S.W. Hwang, A. Patapoutian, and T. Jegla. (2003). Ion channels: opposite thermosensor in fruitfly and mouse. Nature 423: 822-823. 12815418
Voets, T., B. Nilius, S. Hoefs, A.W.C.M. van der Kemp, G. Droogmans, R.J.M. Bindels, and J.G.J. Hoenderop. (2004). TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 279: 19-25. 14576148
Vriens, J., H. Watanabe, A. Janssens, G. Droogmans, T. Voets, and B. Nilius. (2004). Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl. Acad. Sci. USA 101: 396-401. 14691263
Walker, V. and G.W. Vuister. (2023). Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv Clin Chem 113: 43-100. 36858649
Wang, H., P. Yang, Y. Lu, J. Wang, J. Jeon, Q. Wang, J.B. Tian, B. Zang, Y. Yu, and M.X. Zhu. (2021). Mechanisms of proton inhibition and sensitization of the cation channel TRPV3. J Gen Physiol 153:. 33320167
Wang, H., Q. Chen, S. Zhang, and L. Lu. (2021). A Transient Receptor Potential-like Calcium Ion Channel in the Filamentous Fungus. J Fungi (Basel) 7:. 34829209
Wang, H., Z. Xu, B.H. Lee, S. Vu, L. Hu, M. Lee, D. Bu, X. Cao, S. Hwang, Y. Yang, J. Zheng, and Z. Lin. (2018). Gain-of-function mutations in TRPM4 activation gate cause progressive symmetric erythrokeratoderma. J Invest Dermatol. [Epub: Ahead of Print] 30528822
Wang, L., R.P. Holmes, and J.B. Peng. (2017). The L530R variation associated with recurrent kidney stones impairs the structure and function of TRPV5. Biochem. Biophys. Res. Commun. 492: 362-367. 28847730
Wang, L., T.M. Fu, Y. Zhou, S. Xia, A. Greka, and H. Wu. (2018). Structures and gating mechanism of human TRPM2. Science 362:. 30467180
Wang, L.X., C.D. Niu, S.F. Wu, and C.F. Gao. (2021). Molecular characterizations and expression profiles of transient receptor potential channels in the brown planthopper, Nilaparvata lugens. Pestic Biochem Physiol 173: 104780. 33771259
Wang, Y., J. Yang, R. Miao, Y. Kang, and Z. Qi. (2020). A novel zinc transporter essential for Arabidopsis zinc and iron-dependent growth. J Plant Physiol. 256: 153296. [Epub: Ahead of Print] 33161180
Wang, Y., L. Tan, K. Jiao, C. Xue, Q. Tang, S. Jiang, Y. Ren, H. Chen, T.M.A. El-Aziz, K.N.M. Abdelazeem, Y. Yu, F. Zhao, M.X. Zhu, and Z. Cao. (2022). Scutellarein attenuates atopic dermatitis by selectively inhibiting transient receptor potential vanilloid 3 channels. Br J Pharmacol. [Epub: Ahead of Print] 35771623
Wang, Y.Y., R.B. Chang, and E.R. Liman. (2010). TRPA1 is a component of the nociceptive response to CO2. J. Neurosci. 30: 12958-12963. 20881114
Wei, S., J. Behn, C.P. Poore, S.W. Low, B. Nilius, H. Fan, and P. Liao. (2022). Binding epitope for recognition of human TRPM4 channel by monoclonal antibody M4M. Sci Rep 12: 19562. 36380063
Weissgerber, P., U. Kriebs, V. Tsvilovskyy, J. Olausson, O. Kretz, C. Stoerger, S. Mannebach, U. Wissenbach, R. Vennekens, R. Middendorff, V. Flockerzi, and M. Freichel. (2012). Excision of Trpv6 gene leads to severe defects in epididymal Ca2+ absorption and male fertility much like single D541A pore mutation. J. Biol. Chem. 287: 17930-17941. 22427671
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Wilkinson, J.A., J.L. Scragg, J.P. Boyle, B. Nilius, and C. Peers. (2008). H2O 2-stimulated Ca2+ influx via TRPM2 is not the sole determinant of subsequent cell death. Pflugers Arch 455: 1141-1151. 18043941
Winn, M.P., P.J. Conlon, K.L. Lynn, M.K. Farrington, T. Creazzo, A.F. Hawkins, N. Daskalakis, S.Y. Kwan, S. Ebersviller, J.L. Burchette, M.A. Pericak-Vance, D.N. Howell, J.M. Vance, and P.B. Rosenberg. (2005). A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801-1804. 15879175
Woll, K.A., K.A. Skinner, E. Gianti, N.V. Bhanu, B.A. Garcia, V. Carnevale, R.G. Eckenhoff, and R. Gaudet. (2017). Sites Contributing to TRPA1 Activation by the Anesthetic Propofol Identified by Photoaffinity Labeling. Biophys. J. [Epub: Ahead of Print] 28935134
Won, J., J. Kim, H. Jeong, J. Kim, S. Feng, B. Jeong, M. Kwak, J. Ko, W. Im, I. So, and H.H. Lee. (2023). Molecular architecture of the Gα-bound TRPC5 ion channel. Nat Commun 14: 2550. 37137991
Wong, F., E.L. Schaefer, B.C. Roop, J.N. LaMendola, D. Johnson-Seaton, and D. Shao. (1989). Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron 3: 81-94. 2482778
Woo SK., Kwon MS., Ivanov A., Geng Z., Gerzanich V. and Simard JM. (2013). Complex N-glycosylation stabilizes surface expression of transient receptor potential melastatin 4b protein. J Biol Chem. 288(51):36409-17. 24214984
Xia, R., Z.Z. Mei, H.J. Mao, W. Yang, L. Dong, H. Bradley, D.J. Beech, and L.H. Jiang. (2008). Identification of pore residues engaged in determining divalent cationic permeation in transient receptor potential melastatin subtype channel 2. J. Biol. Chem. 283: 27426-27432. 18687688
Xiao, B., A.E. Dubin, B. Bursulaya, V. Viswanath, T.J. Jegla, and A. Patapoutian. (2008). Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J. Neurosci. 28: 9640-9651. 18815250
Xiao, R. and X.Z. Xu. (2009). Function and regulation of TRP family channels in C. elegans. Pflugers Arch 458: 851-860. 19421772
Xiao, R., B. Zhang, Y. Dong, J. Gong, T. Xu, J. Liu, and X.Z. Xu. (2013). A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152: 806-817. 23415228
Xie, B. and X.Y. Li. (2018). Inflammatory mediators causing cutaneous chronic itch in some diseases via transient receptor potential channel subfamily V member 1 and subfamily A member 1. J Dermatol. [Epub: Ahead of Print] 30588658
Xu, H., I.S. Ramsey, S.A. Kotecha, M.M. Moran, J.A. Chong, D. Lawson, P. Ge, J. Lilly, I. Silos-Santiago, Y. Xie, P.S. DiStefano, R. Curtis, and D.E. Clapham. (2002). TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418: 181-186. 12077604
Xu, L., Y. Han, X. Chen, A. Aierken, H. Wen, W. Zheng, H. Wang, X. Lu, Z. Zhao, C. Ma, P. Liang, W. Yang, S. Yang, and F. Yang. (2020). Molecular mechanisms underlying menthol binding and activation of TRPM8 ion channel. Nat Commun 11: 3790. 32728032
Xu, X.Z., and P.W. Sternberg. (2003). A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. Cell 114: 285-297. 12914694
Xu, X.Z., F. Chien, A. Butler, L. Salkoff, and C. Montell. (2000). TRPgamma, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron. 26: 647-657. 10896160
Yan, J., C.P. Bengtson, B. Buchthal, A.M. Hagenston, and H. Bading. (2020). Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science 370:. 33033186
Yang, F. and J. Zheng. (2017). Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell. [Epub: Ahead of Print] 28044278
Yang, F., Y. Cui, K. Wang, and J. Zheng. (2010). Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc. Natl. Acad. Sci. USA 107: 7083-7088. 20351268
Yang, P.L., X.H. Li, J. Wang, X.F. Ma, B.Y. Zhou, Y.F. Jiao, W.H. Wang, P. Cao, M.X. Zhu, P.W. Li, Z.H. Xiao, C.Z. Li, C.R. Guo, Y.T. Lei, and Y. Yu. (2021). GSK1702934A and M085 directly activate TRPC6 via a mechanism of stimulating the extracellular cavity formed by the pore helix and transmembrane helix S6. J. Biol. Chem. 101125. [Epub: Ahead of Print] 34461094
Yao, J., B. Liu, and F. Qin. (2011). Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc. Natl. Acad. Sci. USA 108: 11109-11114. 21690353
Ye, L., S. Kleiner, J. Wu, R. Sah, R.K. Gupta, A.S. Banks, P. Cohen, M.J. Khandekar, P. Boström, R.J. Mepani, D. Laznik, T.M. Kamenecka, X. Song, W. Liedtke, V.K. Mootha, P. Puigserver, P.R. Griffin, D.E. Clapham, and B.M. Spiegelman. (2012). TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151: 96-110. 23021218
Yelshanskaya, M.V., K.D. Nadezhdin, M.G. Kurnikova, and A.I. Sobolevsky. (2020). Structure and function of the calcium-selective TRP channel TRPV6. J. Physiol. [Epub: Ahead of Print] 32073143
Yin, Y., F. Zhang, S. Feng, K.J. Butay, M.J. Borgnia, W. Im, and S.Y. Lee. (2022). Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP. Science 378: eadd1268. 36227998
Yin, Y., M. Wu, L. Zubcevic, W.F. Borschel, G.C. Lander, and S.Y. Lee. (2018). Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359: 237-241. 29217583
Yin, Y.L., H.H. Wang, Z.C. Gui, S. Mi, S. Guo, Y. Wang, Q.Q. Wang, R.Z. Yue, L.B. Lin, J.X. Fan, X. Zhang, B.Y. Mao, T.H. Liu, G.R. Wan, H.Q. Zhan, M.L. Zhu, L.H. Jiang, and P. Li. (2022). Citronellal Attenuates Oxidative Stress-Induced Mitochondrial Damage through TRPM2/NHE1 Pathway and Effectively Inhibits Endothelial Dysfunction in Type 2 Diabetes Mellitus. Antioxidants (Basel) 11:. 36421426
Yoshida, Y., K. Saitoh, Y. Aihara, S. Okada, T. Misaka, and K. Abe. (2007). Transient receptor potential channel M5 and phospholipaseC-beta2 colocalizing in zebrafish taste receptor cells. Neuroreport 18: 1517-1520. 17885593
Zakharian, E., C. Cao, and T. Rohacs. (2010). Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J. Neurosci. 30: 12526-12534. 20844147
Zayats V., Samad A., Minofar B., Roelofs KE., Stockner T. and Ettrich R. (2013). Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain. J Mol Model. 19(11):4689-700. 22752543
Zernov, N., A.V. Veselovsky, V.V. Poroikov, D. Melentieva, A. Bolshakova, and E. Popugaeva. (2022). New Positive TRPC6 Modulator Penetrates Blood-Brain Barrier, Eliminates Synaptic Deficiency and Restores Memory Deficit in 5xFAD Mice. Int J Mol Sci 23:. 36362339
Zhai, K., A. Liskova, P. Kubatka, and D. Büsselberg. (2020). Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci 21:. 32545311
Zhang, F., A. Jara-Oseguera, T.H. Chang, C. Bae, S.M. Hanson, and K.J. Swartz. (2017). Heat activation is intrinsic to the pore domain of TRPV1. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 29279388
Zhang, L., C. Simonsen, L. Zimova, K. Wang, L. Moparthi, R. Gaudet, M. Ekoff, G. Nilsson, U.A. Hellmich, V. Vlachova, P. Gourdon, and P.M. Zygmunt. (2022). Cannabinoid non-cannabidiol site modulation of TRPV2 structure and function. Nat Commun 13: 7483. 36470868
Zhang, Y. and Y. Wang. (2017). [TRPV1: an important molecule involved in the peripheral sensitization during chronic pain and central pain modulation]. Sheng Li Xue Bao 69: 677-684. 29063115
Zhang, Z., H. Okawa, Y. Wang, and E.R. Liman. (2005). Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem. 280: 39185-39192. 16186107
Zhao, Y., B.M. McVeigh, and V.Y. Moiseenkova-Bell. (2021). Structural Pharmacology of TRP Channels. J. Mol. Biol. 166914. [Epub: Ahead of Print] 33676926
Zhou, X., Z. Su, A. Anishkin, W.J. Haynes, E.M. Friske, S.H. Loukin, C. Kung, and Y. Saimi. (2007). Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate. Proc. Natl. Acad. Sci. USA. 104: 15555-15559. 17878311
Zhou, X.L., S.H. Loukin, R. Coria, C. Kung, and Y. Saimi. (2005). Heterologously expressed fungal transient receptor potential channels retain mechanosensitivity in vitro and osmotic response in vivo. Eur Biophys. J. 34: 413-422. 15711808
Zhou, Y., P. Castonguay, E.H. Sidhom, A.R. Clark, M. Dvela-Levitt, S. Kim, J. Sieber, N. Wieder, J.Y. Jung, S. Andreeva, J. Reichardt, F. Dubois, S.C. Hoffmann, J.M. Basgen, M.S. Montesinos, A. Weins, A.C. Johnson, E.S. Lander, M.R. Garrett, C.R. Hopkins, and A. Greka. (2017). A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358: 1332-1336. 29217578
Zhu, C., K. Huang, Y. Wang, K. Alanis, W. Shi, and L.A. Baker. (2021). Imaging with Ion Channels. Anal Chem 93: 5355-5359. 33759498
Zimmermann, K., J.K. Lennerz, A. Hein, A.S. Link, J.S. Kaczmarek, M. Delling, S. Uysal, J.D. Pfeifer, A. Riccio, and D.E. Clapham. (2011). Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc. Natl. Acad. Sci. USA 108: 18114-18119. 22025699
Zouharova, M., P. Herman, K. Hofbauerová, J. Vondrasek, and K. Bousova. (2019). TRPM6 N-Terminal CaM- and S100A1-Binding Domains. Int J Mol Sci 20:. 31505788
Zsidó, B.Z., R. Börzsei, E. Pintér, and C. Hetényi. (2021). Prerequisite Binding Modes Determine the Dynamics of Action of Covalent Agonists of Ion Channel TRPA1. Pharmaceuticals (Basel) 14:. 34681212
Zubcevic, L. and S.Y. Lee. (2019). The role of π-helices in TRP channel gating. Curr. Opin. Struct. Biol. [Epub: Ahead of Print] 31378426
Zubcevic, L., M.A. Herzik, Jr, B.C. Chung, Z. Liu, G.C. Lander, and S.Y. Lee. (2016). Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23: 180-186. 26779611
Zubcevic, L., W.F. Borschel, A.L. Hsu, M.J. Borgnia, and S.Y. Lee. (2019). Regulatory switch at the cytoplasmic interface controls TRPV channel gating. Elife 8:. 31070581