TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.C.42.1.1
Bacillus anthracis protective antigen (PA). Many cationic compounds inhibit in nM - mM concentration ranges (Yamini et al. 2016). Both symmetry and size of cyclodextrin inhibitors and the toxin pore are important for effective inhibition (Yannakopoulou et al., 2011).  A cryo electron microscopic structure of the anthrax protective antigen translocon and the N-terminal domain of anthrax lethal factor inserted into a nanodisc model lipid bilayer has been solved revealing a cap, a narrow stalk and a transmembrane channel (Gogol et al. 2013).  Poly(amindo)amine (PAMAM) dentrimers block activity (Förstner et al. 2014).  The 3-d structure of PA, showing the channel and the φ-clamp, and providing information about the multi-step mechanism by which low pH is sensed and the membrane-spanning channel is formed has been published (Jiang et al. 2015).  The export of the lethal factor and edema factor from the endosome into the host cytosol is dependent on the proton motive force (pmf) (Colby and Krantz 2015).

Accession Number:P13423
Protein Name:PAG aka PA aka PAGA aka PXO1-110
Length:764
Molecular Weight:85811.00
Species:Bacillus anthracis [1392]
Number of TMSs:1
Location1 / Topology2 / Orientation3: Secreted1
Substrate Protein toxins, small molecules

Cross database links:

HEGENOM: HBG339202
DIP: DIP-29841N
RefSeq: NP_052806.1    NP_652920.1    YP_016495.2   
Entrez Gene ID: 1158723    2820165    3361714   
Pfam: PF03495   
BioCyc: BANT261594:GBAA_PXO1_0154-MONOMER   
KEGG: bar:GBAA_pXO1_0   

Gene Ontology

GO:0005615 C:extracellular space
GO:0046872 F:metal ion binding
GO:0005515 F:protein binding
GO:0009405 P:pathogenesis

References (27)

[1] “Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis.”  Welkos S.L.et.al.   3148491
[2] “Genetic diversity in the protective antigen gene of Bacillus anthracis.”  Price L.B.et.al.   10197996
[3] “Attenuated nontoxinogenic and nonencapsulated recombinant Bacillus anthracis spore vaccines protect against anthrax.”  Cohen S.et.al.   10899854
[4] “Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes.”  Okinaka R.T.et.al.   10515943
[5] “Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis.”  Read T.D.et.al.   12004073
[6] “Sequence analysis of the genes encoding for the major virulence factors of Bacillus anthracis vaccine strain 'Carbosap'.”  Adone R.et.al.   12067380
[7] “Preparation of a positive control DNA for molecular diagnosis of Bacillus anthracis.”  Inoue S.et.al.   14985634
[8] “The carboxyl-terminal end of protective antigen is required for receptor binding and anthrax toxin activity.”  Singh Y.et.al.   1651334
[9] “Anthrax protective antigen forms oligomers during intoxication of mammalian cells.”  Milne J.C.et.al.   8051159
[10] “Proteolytic activation of receptor-bound anthrax protective antigen on macrophages promotes its internalization.”  Beauregard K.E.et.al.   11207581
[11] “Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two promoters.”  Koehler T.M.et.al.   8300513
[12] “Production of Bacillus anthracis protective antigen is dependent on the extracellular chaperone, PrsA.”  Williams R.C.et.al.   12606539
[13] “Binding of anthrax toxin to its receptor is similar to alpha integrin-ligand interactions.”  Bradley K.A.et.al.   14507921
[14] “The chymotrypsin-sensitive site, FFD315, in anthrax toxin protective antigen is required for translocation of lethal factor.”  Singh Y.et.al.   7961869
[15] “Identification of a receptor-binding region within domain 4 of the protective antigen component of anthrax toxin.”  Varughese M.et.al.   10085028
[16] “Trp 346 and Leu 352 residues in protective antigen are required for the expression of anthrax lethal toxin activity.”  Batra S.et.al.   11178978
[17] “Hydrophobic residues Phe552, Phe554, Ile562, Leu566, and Ile574 are required for oligomerization of anthrax protective antigen.”  Ahuja N.et.al.   11554763
[18] “Role of residues constituting the 2beta1 strand of domain II in the biological activity of anthrax protective antigen.”  Khanna H.et.al.   11356563
[19] “Involvement of domain 3 in oligomerization by the protective antigen moiety of anthrax toxin.”  Mogridge J.et.al.   11222612
[20] “Point mutations in anthrax protective antigen that block translocation.”  Sellman B.R.et.al.   11113126
[21] “Identification of amino acid residues of anthrax protective antigen involved in binding with lethal factor.”  Chauhan V.et.al.   12117959
[22] “Mapping dominant-negative mutations of anthrax protective antigen by scanning mutagenesis.”  Mourez M.et.al.   14623961
[23] “Alanine-scanning mutations in domain 4 of anthrax toxin protective antigen reveal residues important for binding to the cellular receptor and to a neutralizing monoclonal antibody.”  Rosovitz M.J.et.al.   12771151
[24] “Crystal structure of the anthrax toxin protective antigen.”  Petosa C.et.al.   9039918
[25] “Crystal structure of a complex between anthrax toxin and its host cell receptor.”  Santelli E.et.al.   15243628
[26] “Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation.”  Lacy D.B.et.al.   15326297
[27] “Anthrax.”  Mock M.et.al.   11544370
Structure:
1ACC   1T6B   1TX5   1TZN   1TZO   1V36   3ETB   3INO   3J9C   3KWV   [...more]

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MKKRKVLIPL MALSTILVSS TGNLEVIQAE VKQENRLLNE SESSSQGLLG YYFSDLNFQA 
61:	PMVVTSSTTG DLSIPSSELE NIPSENQYFQ SAIWSGFIKV KKSDEYTFAT SADNHVTMWV 
121:	DDQEVINKAS NSNKIRLEKG RLYQIKIQYQ RENPTEKGLD FKLYWTDSQN KKEVISSDNL 
181:	QLPELKQKSS NSRKKRSTSA GPTVPDRDND GIPDSLEVEG YTVDVKNKRT FLSPWISNIH 
241:	EKKGLTKYKS SPEKWSTASD PYSDFEKVTG RIDKNVSPEA RHPLVAAYPI VHVDMENIIL 
301:	SKNEDQSTQN TDSQTRTISK NTSTSRTHTS EVHGNAEVHA SFFDIGGSVS AGFSNSNSST 
361:	VAIDHSLSLA GERTWAETMG LNTADTARLN ANIRYVNTGT APIYNVLPTT SLVLGKNQTL 
421:	ATIKAKENQL SQILAPNNYY PSKNLAPIAL NAQDDFSSTP ITMNYNQFLE LEKTKQLRLD 
481:	TDQVYGNIAT YNFENGRVRV DTGSNWSEVL PQIQETTARI IFNGKDLNLV ERRIAAVNPS 
541:	DPLETTKPDM TLKEALKIAF GFNEPNGNLQ YQGKDITEFD FNFDQQTSQN IKNQLAELNA 
601:	TNIYTVLDKI KLNAKMNILI RDKRFHYDRN NIAVGADESV VKEAHREVIN SSTEGLLLNI 
661:	DKDIRKILSG YIVEIEDTEG LKEVINDRYD MLNISSLRQD GKTFIDFKKY NDKLPLYISN 
721:	PNYKVNVYAV TKENTIINPS ENGDTSTNGI KKILIFSKKG YEIG