TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


9.A.14.7.2
Extracellular calcium-sensing receptor of 1078 aas and 7 TMSs, designated CASR, GPRC2A, and PCAR1.  It senses changes in the extracellular concentration of calcium ions and plays a key role in maintaining calcium homeostasis (Kim et al. 2016). In the inner ear membranous labyrinth, CaSR localizes exclusively to mitochondrion-rich cells, suggesting a unique role of the endolymphatic sac epithelium in CaSR-mediated sensing and control (Bächinger et al. 2019). The basolateral Ca2+-sensing receptor (TC# 9.A.14.7.2) has the ability to downregulate the activity of the NKCC1 transporter upon activation. Once transported into the tubule cells, sodium ions are actively transported across the basolateral membrane by the Na+,K+-ATPases, and chloride ions pass by facilitated diffusion through basolateral chloride channels. Potassium, however, is able to diffuse back into the tubule lumen through apical potassium channels, returning a net positive charge to the lumen and establishing a positive voltage between the lumen and interstitial space. This charge gradient is obligatory for the paracellular reabsorption of both calcium and magnesium ions.  The calcium-sensing receptor (CaSR) modulates ocular surface chloride transport, and its inhibition promotes ocular surface hydration (Pasricha et al. 2024).  

Accession Number:P41180
Protein Name:Extracellular calcium-sensing receptor
Length:1078
Molecular Weight:120674.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:7
Location1 / Topology2 / Orientation3: Cell membrane1 / Multi-pass membrane protein2
Substrate

Cross database links:

DIP: DIP-5975N DIP-5975N
Entrez Gene ID: 846   
Pfam: PF00003    PF01094    PF07562   
KEGG: hsa:846    hsa:846   

Gene Ontology

GO:0005887 C:integral to plasma membrane
GO:0004930 F:G-protein coupled receptor activity
GO:0004435 F:phosphatidylinositol phospholipase C activity
GO:0005515 F:protein binding
GO:0009653 P:anatomical structure morphogenesis
GO:0070509 P:calcium ion import
GO:0019722 P:calcium-mediated signaling
GO:0006874 P:cellular calcium ion homeostasis
GO:0007635 P:chemosensory behavior
GO:0005513 P:detection of calcium ion
GO:0001503 P:ossification

References (86)

[1] “Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs.”  Garrett J.E.et.al.   7759551
[2] “Molecular cloning of a putative Ca(2+)-sensing receptor cDNA from human kidney.”  Aida K.et.al.   7677761
[3] “Expression of a calcium-sensing receptor in a human medullary thyroid carcinoma cell line and its contribution to calcitonin secretion.”  Freichel M.et.al.   8756555
[4] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[5] “Familial hypocalciuric hypercalcemia associated with mutation in the human Ca(2+)-sensing receptor gene.”  Aida K.et.al.   7673400
[6] “Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor.”  Bikle D.D.et.al.   8613532
[7] “Calcium-sensing receptor ubiquitination and degradation mediated by the E3 ubiquitin ligase dorfin.”  Huang Y.et.al.   16513638
[8] “Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism.”  Pollak M.R.et.al.   7916660
[9] “Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation.”  Pollak M.R.et.al.   7874174
[10] “Mutations in the human Ca(2+)-sensing-receptor gene that cause familial hypocalciuric hypercalcemia.”  Chou Y.-H.W.et.al.   7726161
[11] “Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism.”  Pearce S.H.S.et.al.   8675635
[12] “The Ca(2+)-sensing receptor gene (PCAR1) mutation T151M in isolated autosomal dominant hypoparathyroidism.”  Lovlie R.et.al.   8698326
[13] “Mutations in the Ca(2+)-sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism.”  Baron J.et.al.   8733126
[14] “A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor.”  Pearce S.H.S.et.al.   8813042
[15] “A novel mutation (L174R) in the Ca2+-sensing receptor gene associated with familial hypocalciuric hypercalcemia.”  Ward B.K.et.al.   9298824
[16] “Sporadic hypoparathyroidism caused by de Novo gain-of-function mutations of the Ca(2+)-sensing receptor.”  De Luca F.et.al.   9253358
[17] “Two novel missense mutations in calcium-sensing receptor gene associated with neonatal severe hyperparathyroidism.”  Kobayashi M.et.al.   9253359
[18] “Familial hypoparathyroidism: identification of a novel gain of function mutation in transmembrane domain 5 of the calcium-sensing receptor.”  Watanabe T.et.al.   9661634
[19] “An adult patient with severe hypercalcaemia and hypocalciuria due to a novel homozygous inactivating mutation of calcium-sensing receptor.”  Chikatsu N.et.al.   10468915
[20] “A novel activating mutation in calcium-sensing receptor gene associated with a family of autosomal dominant hypocalcemia.”  Okazaki R.et.al.   9920108
[21] “Autosomal dominant hypoparathyroidism associated with short stature and premature osteoarthritis.”  Stock J.L.et.al.   10487661
[22] “A986S polymorphism of the calcium-sensing receptor and circulating calcium concentrations.”  Cole D.E.C.et.al.   10023897
[23] “Familial hypercalcemia and hypercalciuria caused by a novel mutation in the cytoplasmic tail of the calcium receptor.”  Carling T.et.al.   10843194
[24] “A novel mutation in Ca2+-sensing receptor gene in familial hypocalciuric hypercalcemia.”  Nakayama T.et.al.   11762699
[25] “Association between total serum calcium and the A986S polymorphism of the calcium-sensing receptor gene.”  Cole D.E.C.et.al.   11161843
[26] “A family of autosomal dominant hypocalcemia with a positive correlation between serum calcium and magnesium: identification of a novel gain of function mutation (Ser(820)Phe) in the calcium-sensing receptor.”  Nagase T.et.al.   12050233
[27] “Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing receptor gene.”  Sato K.et.al.   12107202
[28] “Association between activating mutations of calcium-sensing receptor and Bartter's syndrome.”  Watanabe S.et.al.   12241879
[29] “Autosomal dominant hypocalcemia: a novel activating mutation (E604K) in the cysteine-rich domain of the calcium-sensing receptor.”  Tan Y.M.et.al.   12574188
[30] “Recurrent familial hypocalcemia due to germline mosaicism for an activating mutation of the calcium-sensing receptor gene.”  Hendy G.N.et.al.   12915654
[31] “Blood ionized calcium is associated with clustered polymorphisms in the carboxyl-terminal tail of the calcium-sensing receptor.”  Scillitani A.et.al.   15531522
[32] “Severe hypercalcemia in a 9-year-old Brazilian girl due to a novel inactivating mutation of the calcium-sensing receptor.”  Miyashiro K.et.al.   15579740
[33] “Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications.”  Warner J.et.al.   14985373
[34] “A novel mutation (E767K) in the second extracellular loop of the calcium sensing receptor in a family with autosomal dominant hypocalcemia.”  Uckun-Kitapci A.et.al.   15551332
[35] “Impaired cotranslational processing of the calcium-sensing receptor due to signal peptide missense mutations in familial hypocalciuric hypercalcemia.”  Pidasheva S.et.al.   15879434
[36] “Functional characterization of calcium-sensing receptor codon 227 mutations presenting as either familial (benign) hypocalciuric hypercalcemia or neonatal hyperparathyroidism.”  Wystrychowski A.et.al.   15572418
[37] “Identification of a novel inactivating R465Q mutation of the calcium-sensing receptor.”  Leech C.et.al.   16598859
[38] “A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone.”  Mittelman S.D.et.al.   16608894
[39] “Identification and functional characterization of a novel mutation in the calcium-sensing receptor gene in familial hypocalciuric hypercalcemia: modulation of clinical severity by vitamin D status.”  Zajickova K.et.al.   17473068
[40] “Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population.”  Nissen P.H.et.al.   17698911
[41] “An idiopathic epilepsy syndrome linked to 3q13.3-q21 and missense mutations in the extracellular calcium sensing receptor gene.”  Kapoor A.et.al.   18756473
[42] “A homozygous inactivating calcium-sensing receptor mutation, Pro339Thr, is associated with isolated primary hyperparathyroidism: correlation between location of mutations and severity of hypercalcaemia.”  Hannan F.M.et.al.   20846291
[43] “Familial hypocalciuric hypercalcemia: new mutation in the CASR gene converting valine 697 to methionine.”  Aparicio Lopez C.et.al.   21643651
[44] “Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs.”  Garrett J.E.et.al.   7759551
[45] “Molecular cloning of a putative Ca(2+)-sensing receptor cDNA from human kidney.”  Aida K.et.al.   7677761
[46] “Expression of a calcium-sensing receptor in a human medullary thyroid carcinoma cell line and its contribution to calcitonin secretion.”  Freichel M.et.al.   8756555
[47] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[48] “Familial hypocalciuric hypercalcemia associated with mutation in the human Ca(2+)-sensing receptor gene.”  Aida K.et.al.   7673400
[49] “Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor.”  Bikle D.D.et.al.   8613532
[50] “Calcium-sensing receptor ubiquitination and degradation mediated by the E3 ubiquitin ligase dorfin.”  Huang Y.et.al.   16513638
[51] “Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism.”  Pollak M.R.et.al.   7916660
[52] “Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation.”  Pollak M.R.et.al.   7874174
[53] “Mutations in the human Ca(2+)-sensing-receptor gene that cause familial hypocalciuric hypercalcemia.”  Chou Y.-H.W.et.al.   7726161
[54] “Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism.”  Pearce S.H.S.et.al.   8675635
[55] “The Ca(2+)-sensing receptor gene (PCAR1) mutation T151M in isolated autosomal dominant hypoparathyroidism.”  Lovlie R.et.al.   8698326
[56] “Mutations in the Ca(2+)-sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism.”  Baron J.et.al.   8733126
[57] “A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor.”  Pearce S.H.S.et.al.   8813042
[58] “A novel mutation (L174R) in the Ca2+-sensing receptor gene associated with familial hypocalciuric hypercalcemia.”  Ward B.K.et.al.   9298824
[59] “Sporadic hypoparathyroidism caused by de Novo gain-of-function mutations of the Ca(2+)-sensing receptor.”  De Luca F.et.al.   9253358
[60] “Two novel missense mutations in calcium-sensing receptor gene associated with neonatal severe hyperparathyroidism.”  Kobayashi M.et.al.   9253359
[61] “Familial hypoparathyroidism: identification of a novel gain of function mutation in transmembrane domain 5 of the calcium-sensing receptor.”  Watanabe T.et.al.   9661634
[62] “An adult patient with severe hypercalcaemia and hypocalciuria due to a novel homozygous inactivating mutation of calcium-sensing receptor.”  Chikatsu N.et.al.   10468915
[63] “A novel activating mutation in calcium-sensing receptor gene associated with a family of autosomal dominant hypocalcemia.”  Okazaki R.et.al.   9920108
[64] “Autosomal dominant hypoparathyroidism associated with short stature and premature osteoarthritis.”  Stock J.L.et.al.   10487661
[65] “A986S polymorphism of the calcium-sensing receptor and circulating calcium concentrations.”  Cole D.E.C.et.al.   10023897
[66] “Familial hypercalcemia and hypercalciuria caused by a novel mutation in the cytoplasmic tail of the calcium receptor.”  Carling T.et.al.   10843194
[67] “A novel mutation in Ca2+-sensing receptor gene in familial hypocalciuric hypercalcemia.”  Nakayama T.et.al.   11762699
[68] “Association between total serum calcium and the A986S polymorphism of the calcium-sensing receptor gene.”  Cole D.E.C.et.al.   11161843
[69] “A family of autosomal dominant hypocalcemia with a positive correlation between serum calcium and magnesium: identification of a novel gain of function mutation (Ser(820)Phe) in the calcium-sensing receptor.”  Nagase T.et.al.   12050233
[70] “Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing receptor gene.”  Sato K.et.al.   12107202
[71] “Association between activating mutations of calcium-sensing receptor and Bartter's syndrome.”  Watanabe S.et.al.   12241879
[72] “Autosomal dominant hypocalcemia: a novel activating mutation (E604K) in the cysteine-rich domain of the calcium-sensing receptor.”  Tan Y.M.et.al.   12574188
[73] “Recurrent familial hypocalcemia due to germline mosaicism for an activating mutation of the calcium-sensing receptor gene.”  Hendy G.N.et.al.   12915654
[74] “Blood ionized calcium is associated with clustered polymorphisms in the carboxyl-terminal tail of the calcium-sensing receptor.”  Scillitani A.et.al.   15531522
[75] “Severe hypercalcemia in a 9-year-old Brazilian girl due to a novel inactivating mutation of the calcium-sensing receptor.”  Miyashiro K.et.al.   15579740
[76] “Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications.”  Warner J.et.al.   14985373
[77] “A novel mutation (E767K) in the second extracellular loop of the calcium sensing receptor in a family with autosomal dominant hypocalcemia.”  Uckun-Kitapci A.et.al.   15551332
[78] “Impaired cotranslational processing of the calcium-sensing receptor due to signal peptide missense mutations in familial hypocalciuric hypercalcemia.”  Pidasheva S.et.al.   15879434
[79] “Functional characterization of calcium-sensing receptor codon 227 mutations presenting as either familial (benign) hypocalciuric hypercalcemia or neonatal hyperparathyroidism.”  Wystrychowski A.et.al.   15572418
[80] “Identification of a novel inactivating R465Q mutation of the calcium-sensing receptor.”  Leech C.et.al.   16598859
[81] “A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone.”  Mittelman S.D.et.al.   16608894
[82] “Identification and functional characterization of a novel mutation in the calcium-sensing receptor gene in familial hypocalciuric hypercalcemia: modulation of clinical severity by vitamin D status.”  Zajickova K.et.al.   17473068
[83] “Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population.”  Nissen P.H.et.al.   17698911
[84] “An idiopathic epilepsy syndrome linked to 3q13.3-q21 and missense mutations in the extracellular calcium sensing receptor gene.”  Kapoor A.et.al.   18756473
[85] “A homozygous inactivating calcium-sensing receptor mutation, Pro339Thr, is associated with isolated primary hyperparathyroidism: correlation between location of mutations and severity of hypercalcaemia.”  Hannan F.M.et.al.   20846291
[86] “Familial hypocalciuric hypercalcemia: new mutation in the CASR gene converting valine 697 to methionine.”  Aparicio Lopez C.et.al.   21643651
Structure:
5FBH   5FBK   5K5S   5K5T     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MAFYSCCWVL LALTWHTSAY GPDQRAQKKG DIILGGLFPI HFGVAAKDQD LKSRPESVEC 
61:	IRYNFRGFRW LQAMIFAIEE INSSPALLPN LTLGYRIFDT CNTVSKALEA TLSFVAQNKI 
121:	DSLNLDEFCN CSEHIPSTIA VVGATGSGVS TAVANLLGLF YIPQVSYASS SRLLSNKNQF 
181:	KSFLRTIPND EHQATAMADI IEYFRWNWVG TIAADDDYGR PGIEKFREEA EERDICIDFS 
241:	ELISQYSDEE EIQHVVEVIQ NSTAKVIVVF SSGPDLEPLI KEIVRRNITG KIWLASEAWA 
301:	SSSLIAMPQY FHVVGGTIGF ALKAGQIPGF REFLKKVHPR KSVHNGFAKE FWEETFNCHL 
361:	QEGAKGPLPV DTFLRGHEES GDRFSNSSTA FRPLCTGDEN ISSVETPYID YTHLRISYNV 
421:	YLAVYSIAHA LQDIYTCLPG RGLFTNGSCA DIKKVEAWQV LKHLRHLNFT NNMGEQVTFD 
481:	ECGDLVGNYS IINWHLSPED GSIVFKEVGY YNVYAKKGER LFINEEKILW SGFSREVPFS 
541:	NCSRDCLAGT RKGIIEGEPT CCFECVECPD GEYSDETDAS ACNKCPDDFW SNENHTSCIA 
601:	KEIEFLSWTE PFGIALTLFA VLGIFLTAFV LGVFIKFRNT PIVKATNREL SYLLLFSLLC 
661:	CFSSSLFFIG EPQDWTCRLR QPAFGISFVL CISCILVKTN RVLLVFEAKI PTSFHRKWWG 
721:	LNLQFLLVFL CTFMQIVICV IWLYTAPPSS YRNQELEDEI IFITCHEGSL MALGFLIGYT 
781:	CLLAAICFFF AFKSRKLPEN FNEAKFITFS MLIFFIVWIS FIPAYASTYG KFVSAVEVIA 
841:	ILAASFGLLA CIFFNKIYII LFKPSRNTIE EVRCSTAAHA FKVAARATLR RSNVSRKRSS 
901:	SLGGSTGSTP SSSISSKSNS EDPFPQPERQ KQQQPLALTQ QEQQQQPLTL PQQQRSQQQP 
961:	RCKQKVIFGS GTVTFSLSFD EPQKNAMAHR NSTHQNSLEA QKSSDTLTRH QPLLPLQCGE 
1021:	TDLDLTVQET GLQGPVGGDQ RPEVEDPEEL SPALVVSSSQ SFVISGGGST VTENVVNS