TCDB is operated by the Saier Lab Bioinformatics Group

1.A.2 Inward Rectifier K Channel (IRK-C) Family

IRK channels possess the ''minimal channel-forming structure'' with only a P domain, characteristic of the channel proteins of the VIC family (TC #1.A.1), and two flanking transmembrane spanners. They may exist in the membrane as homo- or heterooligomers. They have a greater tendency to let K flow into the cell than out. Voltage-dependence may be regulated by external K+ , by internal Mg2+ , by internal ATP and/or by G-proteins. The P domains of IRK channels exhibit limited sequence similarity to those of the VIC family. Inward rectifiers play a role in setting cellular membrane potentials, and closing of these channels upon depolarization permits the occurrence of long duration action potentials with a plateau phase. Inward rectifiers lack the intrinsic voltage sensing helices found in many VIC family channels. In a few cases, those of Kir1.1a, Kir6.1 and Kir6.2, for example, direct interaction with a member of the ABC superfamily has been proposed to confer unique functional and regulatory properties to the heteromeric complex, including sensitivity to ATP. These ATP-sensitive channels are found in many body tissues. They render channel activity responsive to the cytoplasmic ATP/ADP ratio (increased ATP/ADP closes the channel). The human SUR1 and SUR2 sulfonylurea receptors (spQ09428 and Q15527, respectively) are the ABC proteins that regulate both the Kir6.1 and Kir6.2 channels in response to ATP, and CFTR (TC #3.A.1.208.4) may regulate Kir1.1a.

Mutations in SUR1 are the cause of familial persistent hyperinsulinemic hypoglycemia in infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion in the pancreas. SUR1 has two nucleotide binding domains, NBD1 (binds ATP) and NBD2 (binds Mg-ADP). Both NBDs mediate nucleotide regulation of pore activity. Kir6.2, unlike many other Kir channels, cannot form plasma membrane functional channels when expressed without SUR1. This is due to a trafficking signal in SUR1 (Partridge et al., 2001).

The crystal structure (Kuo et al., 2003) and function (Enkvetchakul et al., 2004) of bacterial members of the IRK-C family have been determined. KirBac1.1, from Burkholderia pseudomallei, is 333 aas long with two N-terminal TMSs flanking a P-loop (residues 1-150), and the C-terminal half of the protein is hydrophilic. It transports monovalent cations with the selectivity: K ~ Rb ~ Cs >> Li ~ Na ~ NMGM (protonated N-methyl-D-glucamine). Activity is inhibited by Ba2* , Ca2+ and low pH (Enkvetchakul et al., 2004). 

Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) proteins and phosphoinositide signaling pathways. These channels were the first characterized effectors of the betagamma subunits of G proteins. The crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) provided structural insight. This channel has been functionally reconstituted in planar lipid bilayers (Leal-Pinto et al. 2010). The chimera behaved like a Kir channel, displaying a requirement for PIP(2) and Mg2+-dependent inward rectification. The channel was blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins but the presence of both activated G-alpha and G-betagamma subunits was required for gating.

GIRK (Kir3) channels are members of the large family of inwardly rectifying potassium channels (Kir1-Kir7). GIRK channels, like all other Kir channels, possess an extrinsic mechanism of inward rectification involving intracellular Mg2+ and polyamines that occlude the conduction pathway at membrane potentials positive to EK. More than 20 high-resolution atomic structures containing GIRK channel cytoplasmic domains and transmembrane domains have been solved. These structures have provided valuable insight into the structural determinants of many of the properties common to all inward rectifiers, such as permeation and rectification, as well as revealing the structural bases for GIRK channel gating (Glaaser and Slesinger 2015).

The generalized transport reaction catalyzed by IRK-C family proteins is:

K+ (out) K+ (in).


This family belongs to the: VIC Superfamily.

References associated with 1.A.2 family:

Aguilar-Bryan, L., J.P. Clement IV, G. Gonzalez, K. Kunjilwar, A. Babenko, and J. Bryan. (1998). Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78: 227-245. 9457174
Alvin, Z.V., R.M. Millis, W. Hajj-Mousssa, and G.E. Haddad. (2011). ATP-Sensitive Potassium Channel Currents in Eccentrically Hypertrophied Cardiac Myocytes of Volume-Overloaded Rats. Int J. Cell Biol. 2011: 838951. 21845191
Ashen, M.D., B. O’Rourke, K.A. Kluge, D.C. Johns, and G.F. Tomaselli. (1995). Inward rectifier K+ channel from human heart and brain: cloning and stable expression in a human cell line. Am. J. Physiol. 268: H506-H511. 7840300
Babenko, A.P., G. Gonzalez, and J. Bryan. (1999). Two regions of sulfonylurea receptor specify the spontaneous bursting and ATP inhibition of KATP channel isoforms. J. Biol. Chem. 274: 11587-11592. 10206966
Bendahhou, S., M.R. Donaldson, N.M. Plaster, M. Tristani-Firouzi, Y.-H. Fu, and L.J. Ptácek. (2003). Defective potassium channel Kir2.1 trafficking underlies Andersen-Tawil Syndrome. J. Biol. Chem. 278: 51779-51785. 14522976
Bensassi F., Gallerne C., Sharaf El Dein O., Hajlaoui MR., Bacha H. and Lemaire C. (2012). Cell death induced by the Alternaria mycotoxin Alternariol. Toxicol In Vitro. 26(6):915-23. 22542754
Boim, M.A., K. Ho, M.E. Shuck, M.J. Bienkowski, J.H. Block, J.L. Slightom, Y. Yang, B.M. Brenner, and S.C. Hebert. (1995). ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am. J. Physiol. 268: F1132-1140. 7611454
Bonfanti DH., Alcazar LP., Arakaki PA., Martins LT., Agustini BC., de Moraes Rego FG. and Frigeri HR. (2015). ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem. 48(7-8):476-82. 25583094
Bushman, J.D., Q. Zhou, and S.L. Shyng. (2013). A Kir6.2 Pore Mutation Causes Inactivation of ATP-Sensitive Potassium Channels by Disrupting PIP2-Dependent Gating. PLoS One 8: e63733. 23700433
Caballero, R., P. Dolz-Gaitón, R. Gómez, I. Amorós, A. Barana, M. González de la Fuente, L. Osuna, J. Duarte, A. López-Izquierdo, I. Moraleda, E. Gálvez, J.A. Sánchez-Chapula, J. Tamargo, and E. Delpón. (2010). Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. Proc. Natl. Acad. Sci. USA 107: 15631-15636. 20713726
Cheng, W.W., D. Enkvetchakul, and C.G. Nichols. (2009). KirBac1.1: it's an inward rectifying potassium channel. J Gen Physiol 133: 295-305. 19204189
Choi, S.B., J.U. Kim, H. Joo, and C.K. Min. (2010). Identification and characterization of a novel bacterial ATP-sensitive K+ channel. J Microbiol 48: 325-330. 20571950
Clement, J.P., IV, K. Kunjilwar, G. Gonzalez, M. Schwanstecher, U. Panten, L. Aguilar-Bryan, and J. Bryan. (1997). Association and stoichiometry of KATP channel subunits. Neuron 18: 827-838. 9182806
Coulson, E.J., L.M. May, S.L. Osborne, K. Reid, C.K. Underwood, F.A. Meunier, P.F. Bartlett, and P. Sah. (2008). p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 28: 315-324. 18171948
Enkvetchakul, D., J. Bhattacharyya, I. Jeliazkova, D.K. Groesbeck, C.A. Cukras, and C.G. Nichols. (2004). Functional characterization of a prokaryotic Kir channel. J. Biol. Chem. 279: 47076-47080. 15448150
Epshtein, Y., A.P. Chopra, A. Rosenhouse-Dantsker, G.B. Kowalsky, D.E. Logothetis, and I. Levitan. (2009). Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc. Natl. Acad. Sci. USA 106: 8055-8060. 19416905
Fürst, O., C.G. Nichols, G. Lamoureux, and N. D''Avanzo. (2014). Identification of a cholesterol-binding pocket in inward rectifier K+ (Kir) channels. Biophys. J. 107: 2786-2796. 25517146
Garcia ML., Priest BT., Alonso-Galicia M., Zhou X., Felix JP., Brochu RM., Bailey T., Thomas-Fowlkes B., Liu J., Swensen A., Pai LY., Xiao J., Hernandez M., Hoagland K., Owens K., Tang H., de Jesus RK., Roy S., Kaczorowski GJ. and Pasternak A. (2014). Pharmacologic inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis. J Pharmacol Exp Ther. 348(1):153-64. 24142912
Glaaser, I.W. and P.A. Slesinger. (2015). Structural Insights into GIRK Channel Function. Int Rev Neurobiol 123: 117-160. 26422984
Hansen, S.B., X. Tao, and R. MacKinnon. (2011). Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477: 495-498. 21874019
Hill, C.E., M.M. Briggs, J. Liu, and L. Magtanong. (2002). Cloning, expression, and localization of a rat hepatocyte inwardly rectifying potassium channel. Am. J. Physiol. Gastrointest. Liver Physiol. 282: G233-G240. 11804844
Hille, B. (1992). Ionic Channels of Excitable Membranes, 2nd ed. Sinaur Associates, Inc., Sunderland, MA.
Ho, I.H.M. and R.D. Murrell-Lagnado. (1999). Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem. 274: 8639-8648. 10085101
Inanobe, A., A. Nakagawa, and Y. Kurachi. (2011). Interactions of cations with the cytoplasmic pores of inward rectifier K+ channels in the closed state. J. Biol. Chem. 286: 41801-41811. 21982822
Ishihara, K., T. Yamamoto, and Y. Kubo. (2009). Heteromeric assembly of inward rectifier channel subunit Kir2.1 with Kir3.1 and with Kir3.4. Biochem. Biophys. Res. Commun. 380: 832-837. 19338762
Jaroslawski, S., B. Zadek, F. Ashcroft, C. Venien-Bryan, and S. Scheuring. (2007). Direct visualization of KirBac3.1 potassium channel gating by atomic force microscopy. J. Mol. Biol. 374(2):500-505. 17936299
Kuo, A., J.M. Gulbis, J.F. Antcliff, T. Rahman, E.D. Lowe, J. Zimmer, J. Cuthbertson, F.M. Ashcroft, T. Ezaki, and D.A. Doyle. (2003). Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300: 1922-1926. 12738871
Kurata, H.T., M. Rapedius, M.J. Kleinman, T. Baukrowitz, and C.G. Nichols. (2010). Voltage-dependent gating in a "voltage sensor-less" ion channel. PLoS Biol 8: e1000315. 20208975
Leal-Pinto, E., Y. Gómez-Llorente, S. Sundaram, Q.Y. Tang, T. Ivanova-Nikolova, R. Mahajan, L. Baki, Z. Zhang, J. Chavez, I. Ubarretxena-Belandia, and D.E. Logothetis. (2010). Gating of a G protein-sensitive mammalian Kir3.1 prokaryotic Kir channel chimera in planar lipid bilayers. J. Biol. Chem. 285: 39790-39800. 20937804
Li, J., C.F. Kline, T.J. Hund, M.E. Anderson, and P.J. Mohler. (2010). Ankyrin-B regulates Kir6.2 membrane expression and function in heart. J. Biol. Chem. 285: 28723-28730. 20610380
Lin, Y.W., J.D. Bushman, F.F. Yan, S. Haidar, C. Macmullen, A. Ganguly, C.A. Stanley, and S.L. Shyng. (2008). Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. J. Biol. Chem. 283: 9146-9156. 18250167
Ma, D., X.D. Tang, T.B. Rogers, and P.A. Welling. (2007). An Andersen-Tawil syndrome mutation in Kir2.1 (V302M) alters the G-loop cytoplasmic K+ conduction pathway. J. Biol. Chem. 282: 5781-5789. 17166852
Meng, X.Y., H.X. Zhang, D.E. Logothetis, and M. Cui. (2012). The molecular mechanism by which PIP(2) opens the intracellular G-loop gate of a Kir3.1 channel. Biophys. J. 102: 2049-2059. 22824268
Minor, D.L., Jr., S.J. Masseling, Y.N. Jan, and L.Y. Jan. (1999). Transmembrane structure of an inwardly rectifying potassium channel. Cell 96: 879-891. 10102275
Ortiz, D. and J. Bryan. (2015). Neonatal Diabetes and Congenital Hyperinsulinism Caused by Mutations in ABCC8/SUR1 are Associated with Altered and Opposite Affinities for ATP and ADP. Front Endocrinol (Lausanne) 6: 48. 25926814
Partridge, C.J., D.J. Beech, and A. Sivaprasadarao. (2001). Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism. J. Biol. Chem. 276: 35947-35952. 11457841
Pratt, E.B. and S.L. Shyng. (2011). ATP activates ATP-sensitive potassium channels composed of mutant sulfonylurea receptor 1 and Kir6.2 with diminished PIP2 sensitivity. Channels (Austin) 5: 314-319. 21654216
Principalli, M.A., J.P. Dupuis, C.J. Moreau, M. Vivaudou, and J. Revilloud. (2015). Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues. Physiol Rep 3:. 26416970
Raphemot R., Estevez-Lao TY., Rouhier MF., Piermarini PM., Denton JS. and Hillyer JF. (2014). Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production. Insect Biochem Mol Biol. 51:10-9. 24855023
Rodríguez-Menchaca, A.A., R.A. Navarro-Polanco, T. Ferrer-Villada, J. Rupp, F.B. Sachse, M. Tristani-Firouzi, and J.A. Sánchez-Chapula. (2008). The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proc. Natl. Acad. Sci. U.S.A. 105: 1364-1368. 18216262
Rufino, A.T., S.C. Rosa, F. Judas, A. Mobasheri, M.C. Lopes, and A.F. Mendes. (2013). Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: Possible role in glucose sensing. J. Cell. Biochem. 114: 1879-1889. 23494827
Ruknudin, A., D.H. Schulze, S.K. Sullivan, W.J. Lederer, and P.A. Welling. (1998). Novel subunit composition of a renal epithelial KATP channel. J. Biol. Chem. 273: 14165-14171. 9603917
Salkoff, L. and T. Jegla. (1995). Surfing the DNA databases for K+ channels nets yet more diversity. Neuron 15: 489-492. 7546728
Seino, S. (1999). ATP-sensitive potassium channels: a model of heteromultimeric potassium channel-receptor assemblies. Annu. Rev. Physiol. 61: 337-362. 10099692
Shuck, M.E., J.H. Bock, C.W. Benjamin, T.D. Tsai, K.S. Lee, J.L. Slightom, and M.J. Bienkowski. (1994). Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel. J. Biol. Chem. 269: 24261-24270. 7929082
Suzuki, Y., M. Itakura, M. Kashiwagi, N. Nakamura, T. Matsuki, H. Sakuta, N. Naito, K. Takano, T. Fujita, and S. Hirose. (1999). Identification by differential display of a hypertonicity-inducible inward rectifier potassium channel highly expressed in chloride cells. J. Biol. Chem. 274: 11376-11382. 10196230
Tao, X., J.L. Avalos, J. Chen, and R. MacKinnon. (2009). Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 Å resolution. Science 326: 1668-1674. 20019282
Töpert, C., F. Döring, E. Wischmeyer, C. Karschin, J. Brockhaus, K. Ballanyi, C. Derst, and A. Karschin. (1998). Kir2.4: a novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J. Neurosci. 18: 4096-4105. 9592090
Tselnicker, I. and N. Dascal. (2010). Further characterization of regulation of Ca(V)2.2 by stargazin. Channels (Austin) 4: 351-354. 21139418
Wang S., Makhina EN., Masia R., Hyrc KL., Formanack ML. and Nichols CG. (2013). Domain organization of the ATP-sensitive potassium channel complex examined by fluorescence resonance energy transfer. J Biol Chem. 288(6):4378-88. 23223337
Yang, Y., W. Shi, X. Chen, N. Cui, A.S. Konduru, Y. Shi, T.C. Trower, S. Zhang, and C. Jiang. (2011). Molecular basis and structural insight of vascular K(ATP) channel gating by S-glutathionylation. J. Biol. Chem. 286: 9298-9307. 21216949
Yokogawa, M., M. Osawa, K. Takeuchi, Y. Mase, and I. Shimada. (2011). NMR analyses of the Gbetagamma binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1). J. Biol. Chem. 286: 2215-2223. 21075842
Zeng, W.-Z., X.-J. Li, D.W. Hilgemann, and C.-L. Huang. (2003). Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. J. Biol. Chem. 278: 16852-16856. 12615924
Zhang, C., T. Miki, T. Shibasaki, M. Yokokura, A. Saraya, and S. Seino. (2005). Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish. Physiol Genomics. 24: 290-297. 16317080
Zhou, Q., E.B. Pratt, and S.L. Shyng. (2013). Engineered Kir6.2 mutations that correct the trafficking defect of K(ATP) channels caused by specific SUR1 mutations. Channels (Austin) 7: 313-317. 23695995