TCDB is operated by the Saier Lab Bioinformatics Group

1.A.4 The Transient Receptor Potential Ca2+ Channel (TRP-CC) Family

TRP (transient receptor potential) channels represent a superfamily of cation channels conserved from worms to humans (Vennekens et al. 2012).  They comprise seven subfamilies (TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML). According to Latorre et al. (2009), TRP channels can be grouped into seven subfamilies based on their amino acid sequence homology: (1) the canonical or classic TRPs, (2) the vanilloid receptor TRPs, (3) the melastatin or long TRPs, (4) ankyrin (whose only member is the transmembrane protein 1 [TRPA1]), (5) TRPN after the nonmechanoreceptor potential C (nonpC), and the more distant cousins, the (6) polycystins and (7) mucolipins. Members of the VIC (1.A.1), RIR-CaC (2.A.3) and TRP-CC (1.A.4) Families have similar transmembrane domain structures, but very different cytosolic doman structures (Mio et al. 2008).  Because of their role as cellular sensors, polymodal activation and gating properties, many TRP channels are activated by a variety of different stimuli and function as signal integrators (Latorre et al., 2009; Montell, 2005; Ramsey et al., 2006). These mammalian proteins have been tabulated revealing their accepted designations, activators and inhibitors, putative interacting proteins and proposed functions (Clapham, 2007). The founding members of the TRP superfamily are the TRPC (TRP canonical) channels, which can be activated following the stimulation of phospholipase C and/or depletion of internal calcium stores (Montell, 2005). However, the precise mechanisms leading to TRPC activation remain unclear. TRPC channels regulate nicotine-dependent behavior (Feng et al., 2006).

The mammalian TRP superfamily of cation channels contains at least 22 genes grouped into three major subfamilies based on sequence homology: TRPV (vanilloid), TRPC (canonical), and TRPM (melastatin). Three additional subfamilies (the 'distant TRPs'), TRPP (polycystin), TRPML (mucolipin), and TRPA have been proposed, bringing the total number of TRP-related proteins to around 30 (Earley S, Reading S, Brayden JE, 2007; PMID# 21204506). TRP proteins are six transmembrane-domain polypeptide subunits, and four subunits assemble in the plasma membrane to form functional channels. All TRP channels are cation permeable, and most are not selective for monovalent or divalent ions. However, TRPV5 and TRPV6, display specificity for Ca2+ ions, and TRPM4 and TRPM5 are highly selective for monovalent cations and impermeant to Ca2+.  TRP channels are activated by stimuli including changes in pressure, temperature, osmolarity, and intracellular Ca2+.  Fatty acids and receptor-dependent vasoconstrictor agonists also activate vascular TRP channels. Most channels assemble from four identical TRP subunits, but when multiple TRP subunits are coexpressed, heteromeric channels can form (Earley et al., 2007).

The mammalian TRPM gene family can be subdivided into distinct categories of cation channels that are either highly permeable for Ca2+ (TRPM3/6/7), nonselective (TRPM2/8), or Ca2+ impermeable (TRPM4/5). TRPM6/7 are fused to alpha-kinase domains, whereas TRPM2 is linked to an ADP-ribose phosphohydrolase (Nudix domain). Phylogenetic evidence suggests that Nudix-linked channels represent an ancestral type of TRPM that is present in various phyla, ranging from protists to humans (Mederos y Schnitzler et al., 2008). The pore-forming segments of invertebrate TRPM2-like proteins display high sequence similarity to those of Ca2+-selective TRPMs. Restoration of only two 'ancient' pore residues in human TRPM2 (Q981E/P983Y) increased (4-fold) its permeability for Ca2+. Conversely, introduction of a 'modern' sequence motif into mouse TRPM7 (E1047Q/Y1049P) resulted in the loss of Ca2+ permeation and a linear TRPM2-like current-voltage relationship (Mederos y Schnitzler et al., 2008).

The TRP-CC family includes a variety of channel/sensors that respond to temperature, touch, pain, osmolarity, pheromones, taste, and other stimuli (Clapham, 2003). It has also been called the store-operated calcium channel (SOC) family. These proteins are the prinicipal components in mechanosensitive channels in vertebrate hair cells (TRPA1; 1.A.4.6.1) and stretch-activated channels in various vertebrate cell types (TRPC1; 1.A.4.1.3) (Barritt and Rychkov, 2005). TRPA1 and TRPC1 may use different mechanisms of activation. (a) The functional TRPA1 channel is probably a tetramer that is composed of four identical TRPA1 polypeptide chains or a mixture of TRPA1 and another channel polypeptide. Each TRPA1 polypeptide has 17 ankyrin repeats at the cytoplasmic amino terminus. It is proposed that these are coupled to motor proteins or other regulatory proteins on the cytoplasmic face of the plasma membrane (Barritt and Rychkov, 2005). In response to the deflection of the mechanosensitive cilia bundle induced by sound, tension on the ankyrin repeat domains or changes in protein-protein interactions are altered and the channel opens to admit Ca2+ and other cations. (b) The functional TRPC1 channel is probably a tetramer that is composed of four identical TRPC1 polypeptides or a mixture of TRPC1 polypeptides and another polypeptide. Although each TRPC1 polypeptide contains 3 or 4 ankyrin domains at the N terminus, it is proposed that these are not directly involved in channel gating. In response to a stimulus, such as stretching of the membrane by an increase in the volume of the cell, the channel opens and admits Ca2+. It is possible that release of Ca2+ from the endoplasmic reticulum that is induced by thapsigargin also acts as a stimulus, which alters cell volume and therefore can activate TRPC1 through changes in tension of the phospholipid bilayer.

Prototypical members of the TRP-CC family include the Drosophila retinal proteins TRP and TRPL (Montell and Rubin, 1989; Hardie and Minke, 1993). The 81 aas integral membrane INAF-B protein forms a complex with TRP channels, and they stabilize each other (Cheng and Nash, 2007). SOC members of the family mediate the entry of extracellular Ca2+ into cells in response to depletion of intracellular Ca2+ stores (Clapham, 1996) and agonist stimulated production of inositol-1,4,5 trisphosphate (IP3). One member of the TRP-CC family, mammalian Htrp3, has been shown to form a tight complex with the IP3 receptor (TC #1.A.3.2.1). This interaction is apparently required for IP3 to stimulate Ca2+ release via Htrp3. The vanilloid receptor subtype 1 (VR1), which is the receptor for capsaicin (the 'hot' ingredient in chili peppers) and serves as a heat-activated ion channel in the pain pathway (Caterina et al., 1997), is also a member of this family, and is activated by cannabinoids (i.e., anandamide) and certain inflammatory metabolites of arachidonate such as prostaglandin E2 (Olah et al., 2001). The stretch-inhibitable non-selective cation channel (SIC) is identical to the vanilloid receptor throughout all of its first 700 residues, but it exhibits a different sequence in its last 100 residues. VR1 and SIC transport monovalent cations as well as Ca2+. VR1 is about 10x more permeable to Ca2+ than to monovalent ions. Ca2+ overload probably causes cell death after chronic exposure to capsaicin (McCleskey and Gold, 1999).

The proteins of the TRP-CC family exhibit the same topological organization with a probable KscA-type 3-dimensional structure (Dodier et al., 2004; Dohke et al., 2004). They consist of about 700-800 (VR1, SIC or ECaC) or 1300 (TRP proteins) amino acyl residues with six transmembrane spanners (TMSs) as well as a short hydrophobic 'loop' region between TMSs 5 and 6. This loop region may dip into the membrane and contribute to the ion permeation pathway (Hardie and Minke, 1993). An aspartate residue in the P-loop may form a ring of negative charges that modulate pore properties including ion selectivity and inhibitory characteristics (García-Martínez et al., 2000). VR1 forms homotetramers. In these respects, members of the TRP-CC family resemble those of the VIC family. When one member of the TRP-CC family, the IGF-regulated Ca2+ channel of Mus musculus (TC #1.A.4.2.4), was PSI-BLASTED, it retrieved a partial sequence of a Zea mays K+ channel protein (887 aas; gbY07632) that is clearly a member of the VIC family. The two homologous protein segments of 150 residues were 28% identical, 42% similar with a PSI-BLAST score (without iterations) of 2e6. This observation further suggests a common origin for certain domains in the TRP-CC and VIC families.

All members of the vanilloid family of TRP channels (TRPV) possess an N-terminal ankyrin repeat domain (ARD), which regulates calcium uptake and homeostasis. It is essential for channel assembly and regulation. The 1.7 Å crystal structure of the TRPV6-ARD revealed conserved structural elements unique to the ARDs of TRPV proteins. First, a large twist between the fourth and fifth repeats is induced by residues conserved in all TRPV ARDs. Second, the third finger loop is the most variable region in sequence, length and conformation. In TRPV6, a number of putative regulatory phosphorylation sites map to the base of this third finger. The TRPV6-ARD does not assemble as a tetramer and is monomeric in solution (Phelps et al., 2008). Voltage sensing in thermo-TRP channels has been reviewed by Brauchi et al. (Brauchi and Orio, 2011).

The transient receptor potential (TRP) family of ion channels participate in many signaling pathways. TRPV1 functions as a molecular integrator of noxious stimuli, including heat, low pH, and chemical ligands. The 19-A structure of TRPV1 determined by using single-particle electron cryomicroscopy exhibits fourfold symmetry and comprises two distinct regions: a large open basket-like domain, likely corresponding to the cytoplasmic N- and C-terminal portions, and a more compact domain, corresponding to the transmembrane portion (Moiseenkova et al., 2008). The assignment of transmembrane and cytoplasmic regions was supported by fitting crystal structures of the structurally homologous Kv1.2 channel and isolated TRPV1 ankyrin repeats into the TRPV1 structure.

Most local anaesthetics used clinically are relatively hydrophobic molecules that gain access to their blocking site on the sodium channel by diffusing into or through the cell membrane. These anaesthetics block sodium channels and the excitability of neurons. Binshtok et al. (2007) tested the possibility that the excitability of primary sensory nociceptor (pain-sensing) neurons could be blocked by introducing the charged, membrane-impermeant lidocaine derivative QX-314 through the pore of the noxious-heat-sensitive TRPV1 channel (TC #1.A.4.2.1). They found that charged sodium-channel blockers can be targeted into nociceptors by the application of TRPV1 agonists to produce a pain-specific local anaesthesia. QX-314 applied externally had no effect on the activity of sodium channels in small sensory neurons when applied alone, but when applied in the presence of the TRPV1 agonist capsaicin, QX-314 blocked sodium channels and inhibited excitability (Binshtok et al., 2007).

The amino termini of TRP-CC proteins normally contain a proline-rich region and one or more ankyrin domains. VR1, for example, exhibits three such repeat domains in its amino terminal hydrophilic segment (432 amino acids). It also has a hydrophilic C-terminus that lacks recognizable motifs. The sequence similarity between VR1 and other TRP-CC family proteins is within and adjacent to the sixth TMS, including the hydrophobic 'loop' region. Unlike other TRP-CC family members, VR1 is not a SOC. Mammals appear to have multiple VR1 homologues.

One member of the TRP-CC family, TRP-PLIK (1862 aas; AF346629), has been implicated in the regulation of cell division. It has an N-terminal TRP-CC-like sequence and a C-terminal protein kinase-like sequence. It was shown to autophosphorylate and exhibits an ATP phosphorylation-dependent, non-selective, Ca2+-permeable, outward rectifying conductance (Runnels et al., 2001). Another long homologue, Melastatin, is associated with melanocytic tumor progression whereas another homologue, MTR1, is associated with Beckwith-Wiedemann syndrome and a predisposition for neoplasia. Each of these proteins may be present in the cell as several splice variants.

The rabbit kidney epithelial Ca2+ channel, ECaC, is a Ca2+-selective cation channel with monovalent cation transport activity sensitive to strong inhibition by low concentrations of Ca2+ or Mg2+. ECaC is >100 x more permeable to Ca2+ than Na+. Mutation of D542 to alanine (D542A) (not present in the TRP-CC homologue) abolishes Ca2+ permeation and divalent cation inhibition of monovalent cation permeation. The mutation does not inhibit the latter transport activity. The D542K mutation generates a nonfunctional channel. Thus, a single residue determines the characteristic cation selectivity of ECaC.

The ability to detect variations in humidity is critical for many animals. Birds, reptiles and insects all show preferences for specific humidities that influence their mating, reproduction and geographic distribution. Because of their large surface area to volume ratio, insects are particularly sensitive to humidity, and its detection can influence their survival. Two types of hygroreceptors exist in insects: one responds to an increase (moist receptor) and the other to a reduction (dry receptor) in humidity. Although previous data indicated that mechanosensation might contribute to hygrosensation, the cellular basis of hygrosensation and the genes involved in detecting humidity remain unknown. To understand better the molecular bases of humidity sensing,(Liu et al., 2007b) investigated several genes encoding channels associated with mechanosensation, thermosensing or water transport. They identified two Drosophila melanogaster transient receptor potential channels needed for sensing humidity: CG31284, named water witch (wtrw), which is required to detect moist air, and nanchung (nan), which is involved in detecting dry air. Neurons associated with specialized sensory hairs in the third segment of the antenna express these channels. Neurons expressing wtrw and nan project to central nervous system regions associated with mechanosensation (Liu et al., 2007b).

TRP channels are calcium-permeable nonselective cation channels with six TMS domains and a putative pore loop between TMSs 5 and 6 (Hu et al., 2012). About 28 mammalian TRP channels have been identified, with different numbers of splicing variants for each channel gene. TRP channels have been classified into six different subgroups, including TRPV (1-6), TRPM (1-8), TRPC (1-7), TRPA1, TRPP (1-3), and TRPML (1-3), according to their sequence similarities. In general, TRP channels are involved in calcium handling (e.g., intracellular calcium mobilization and calcium reabsorption) and a broad range of sensory modalities, including pain, temperature, taste, etc. TRP channelopathies are part of important mechanisms in a variety of diseases such as neurodegenerative disorders, diabetes mellitus, inflammatory bowel diseases, epilepsy, cancer, etc. Several members of the TRP family, TRPV1-4, TRPM8, and TRPA1, also called 'ThermoTRPs,' are involved in the detection of temperature changes, thus acting as the molecular thermometers of our body. They are also polymodal nociceptors that integrate painful stimuli such as noxious temperatures and chemical insults. For example, the TRPV1 channel mediates thermal hyperalgesia and pain induced by capsaicin and acid. TRPA1 is a nociceptor that integrates many noxious environmental stimuli including oxidants and electrophilic agents. Gene deletion animals have been created to study the role of TRP channels in pain and nociception; involvement of TRPV1, TRPV3, TRPV4, and TRPA1 in nociception has been confirmed (Hu et al., 2012). 

A class of ion channels that belongs to the transient receptor potential (TRP) superfamily and is present in specialized neurons are temperature detectors. These channels are classified into subfamilies, namely canonical (TRPC), melastatin (TRPM), ankyrin (TRPA), and vanilloid (TRPV). Some of these channels are activated by heat (TRPM2/4/5, TRPV1-4), while others by cold (TRPA1, TRPC5, and TRPM8) (Baez et al. 2014). These channels resemble voltage-dependent K+ channels, with their subunits containing six transmembrane segments that form tetramers. Thermal TRP channels are polymodal receptors that can be activated by temperature, voltage, pH, lipids, and agonists. Their high temperature sensitivity is due to a large enthalpy change ( approximately 100 kcal/mol), which is about five times the enthalpy change in voltage-dependent gating. 

TRPV cation channels are polymodal sensors involved in a variety of physiological processes. TRPV2 is regulated by temperature, ligands such as probenecid and cannabinoids, and lipids. It may play a role in somatosensation, osmosensation and innate immunity. Zubcevic et al. 2016 presented the atomic model of rabbit TRPV2 in its putative desensitized state, as determined by cryo-EM at 4 A resolution. TMS6 (S6), which is involved in gate opening, adopts a conformation different from the one observed in TRPV1. Structural comparisons of TRPV1 and TRPV2 indicate that a rotation of the ankyrin-repeat domain is coupled to pore opening via the TRP domain, and this pore opening can be modulated by rearrangements in the secondary structure of S6. 

Plasma membrane ion channels, and in particular TRPC channels, need a specific membrane environment and association with scaffolding, signaling, and cytoskeleton proteins in order to play their important functional roles. TRPC proteins are incorporated into macromolecular complexes including Ca2+ signaling proteins and proteins involved in vesicle trafficking, cytoskeletal interactions, and scaffolding. Association of TRPC with calmodulin (CaM), IP3R, PMCA, Gq/11, RhoA, and a variety of scaffolding proteins has been demonstrated. The interactions between TRPC channels and adaptor proteins determines their modes of regulation as well as their cellular localizations and functions. Adaptor proteins are involved in assembling Ca2+signaling complexes, in the correct sub-cellular localization of protein partners, and in the regulation of TRPC channelosome. 

The generalized transport reaction catalyzed by TRP-CC family members is:

Ca2+ (out) ⇌ Ca2+ (in)


C+ and Ca2+ (out) ⇌ C+ and Ca2+ (in).


This family belongs to the: VIC Superfamily.

References associated with 1.A.4 family:

Hu H, Bandell M, Grandl J, Petrus M. (2012) 0
Agosto, M.A., Z. Zhang, F. He, I.A. Anastassov, S.J. Wright, J. McGehee, and T.G. Wensel. (2014). Oligomeric State of Purified Transient Receptor Potential Melastatin-1 (TRPM1), a Protein Essential for Dim Light Vision. J. Biol. Chem. 289: 27019-27033. 25112866
Amantini, C., M. Mosca, M. Nabissi, R. Lucciarini, S. Caprodossi, A. Arcella, F. Giangaspero, and G. Santoni. (2007). Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102: 977-990. 17442041
Arias-Darraz, L., D. Cabezas, C.K. Colenso, M. Alegría-Arcos, F. Bravo-Moraga, I. Varas-Concha, D.E. Almonacid, R. Madrid, and S. Brauchi. (2015). A transient receptor potential ion channel in Chlamydomonas shares key features with sensory transduction-associated TRP channels in mammals. Plant Cell 27: 177-188. 25595824
Baez, D., N. Raddatz, G. Ferreira, C. Gonzalez, and R. Latorre. (2014). Gating of thermally activated channels. Curr Top Membr 74: 51-87. 25366233
Barritt, G. and G. Rychkov. (2005). TRPs as mechanosensitive channels. Nat. Cell Biol. 7: 105-107. 15689975
Bautista D.M., J. Siemens, J.M. Glazer, P.R. Tsuruda, A.I. Basbaum, C.L. Stucky, S.E. Jordt, D. Julius. (2007). The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 448: 204-208. 17538622
Benemei, S., R. Patacchini, M. Trevisani, and P. Geppetti. (2015). TRP channels. Curr Opin Pharmacol 22: 18-23. 25725213
Bidaux, G., A.S. Borowiec, C. Dubois, P. Delcourt, C. Schulz, F.V. Abeele, G. Lepage, E. Desruelles, A. Bokhobza, E. Dewailly, C. Slomianny, M. Roudbaraki, L. Héliot, J.L. Bonnal, B. Mauroy, P. Mariot, L. Lemonnier, and N. Prevarskaya. (2016). Targeting of short TRPM8 isoforms induces 4TM-TRPM8-dependent apoptosis in prostate cancer cells. Oncotarget. [Epub: Ahead of Print] 27074561
Bidaux, G., M. Sgobba, L. Lemonnier, A.S. Borowiec, L. Noyer, S. Jovanovic, A.V. Zholos, and S. Haider. (2015). Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel. Biophys. J. 109: 1840-1851. 26536261
BINET, L. (1960). [A rural center of medical biology]. Biol Med (Paris) 49: 165-177. 13800762
Binshtok, A.M., B.P. Bean, and C.J. Woolf. (2007). Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature. 449(7162):607-610. 17914397
Bohlen, C.J., A. Priel, S. Zhou, D. King, J. Siemens, and D. Julius. (2010). A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141: 834-845. 20510930
Brauchi, S. and P. Orio. (2011). Voltage sensing in thermo-TRP channels. Adv Exp Med Biol 704: 517-530. 21290314
Cabezas-Bratesco D., Brauchi S., Gonzalez-Teuber V., Steinberg X., Valencia I. and Colenso C. (201). The Different Roles of The Channel-Kinases TRPM6 and TRPM7. Curr Med Chem. 22(25):2943-53. 26179995
Caffrey M., Li D. and Dukkipati A. (2012). Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry. 51(32):6266-88. 22783824
Cai X., Srivastava S., Surindran S., Li Z. and Skolnik EY. (2014). Regulation of the epithelial Ca(2)(+) channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Mol Biol Cell. 25(8):1244-50. 24523290
Callera, G.E., Y. He, A. Yogi, A.C. Montezano, T. Paravicini, G. Yao, and R.M. Touyz. (2009). Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens 27: 155-166. 19145781
Camacho Londoño, J.E., Q. Tian, K. Hammer, L. Schröder, J. Camacho Londoño, J.C. Reil, T. He, M. Oberhofer, S. Mannebach, I. Mathar, S.E. Philipp, W. Tabellion, F. Schweda, A. Dietrich, L. Kaestner, U. Laufs, L. Birnbaumer, V. Flockerzi, M. Freichel, and P. Lipp. (2015). A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J 36: 2257-2266. 26069213
Cao, E., M. Liao, Y. Cheng, and D. Julius. (2013). TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504: 113-118. 24305161
Caterina, M.J., M.A. Schumacher, M. Tominaga, T.A. Rosen, J. D. Levine, and D. Julius. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816-824. 9349813
Chandel, A., K.K. Das, and A.K. Bachhawat. (2016). Glutathione depletion activates the yeast vacuolar TRP channel, Yvc1p by reversible glutathionylation of specific cysteines. Mol. Biol. Cell. [Epub: Ahead of Print] 27708136
Chang Y., Schlenstedt G., Flockerzi V. and Beck A. (2010). Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1. FEBS Lett. 584(10):2028-32. 20035756
Chen, J., X.F. Zhang, M.E. Kort, J.R. Huth, C. Sun, L.J. Miesbauer, S.C. Cassar, T. Neelands, V.E. Scott, R.B. Moreland, R.M. Reilly, P.J. Hajduk, P.R. Kym, C.W. Hutchins, and C.R. Faltynek. (2008). Molecular determinants of species-specific activation or blockade of TRPA1 channels. J. Neurosci. 28: 5063-5071. 18463259
Cheng Y., Nash H.A. (2007). Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus. Proc. Natl. Acad. Sci. U.S.A. 104: 17730-17734. 17968007
Cheng, K.T., X. Liu, H.L. Ong, and I.S. Ambudkar. (2008). Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J. Biol. Chem. 283: 12935-12940. 18326500
Chubanov, V., K.P. Schlingmann, J. Waring, J. Heinzinger, S. Kaske, S. Waldegger, M.M. Schnitzler, and T. Gudermann. (2007). Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J. Biol. Chem. 282: 7656-7667. 17197439
Chubanov, V., S. Waldegger, M.M. y Schnitzler, H. Vitzthum, M.C. Sassen, H.W. Seyberth, M. Konrad, and T. Gudermann. (2004). Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl. Acad. Sci. USA 101: 2894-2899. 14976260
Clapham D.E. (2007). SnapShot: mammalian TRP channels. Cell. 129: 220. 17418797
Clapham, D.E. (1996). TRP is cracked, but is CRAC TRP? Neuron 16: 1069-1072. 8663982
Clapham, D.E. (2003). TRP channels as cellular sensors. Nature 426: 517-524. 14654832
Csanády, L. and B. Törocsik. (2009). Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol 133: 189-203. 19171771
D'hoedt, D., G. Owsianik, J. Prenen, M.P. Cuajungco, C. Grimm, S. Heller, T. Voets, and B. Nilius. (2008). Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J. Biol. Chem. 283(10): 6272-6280. 18174177
Dodier, Y., U. Banderali, H. Klein, O. Topalak, O. Dafi, M. Simoes, G. Bernatchez, R. Sauvé, and L. Parent. (2004). Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis. J. Biol. Chem. 279: 6853-6862. 14630907
Dohke, Y., Y.S. Oh, I.S. Ambudkar, and R.J. Turner. (2004). Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1. J. Biol. Chem. 279: 12242-12248. 14707123
Donate-Macian P., Bano-Polo M., Vazquez-Ibar JL., Mingarro I. and Peralvarez-Marin A. (2015). Molecular and topological membrane folding determinants of transient receptor potential vanilloid 2 channel. Biochem Biophys Res Commun. 462(3):221-6. 25956061
Du, E.J., T.J. Ahn, I. Kwon, J.H. Lee, J.H. Park, S.H. Park, T.M. Kang, H. Cho, T.J. Kim, H.W. Kim, Y. Jun, H.J. Lee, Y.S. Lee, J.Y. Kwon, and K. Kang. (2016). TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway. PLoS Genet 12: e1005773. 26726767
Feng, Z., W. Li, A. Ward, B.J. Piggott, E.R. Larkspur, P.W. Sternberg, and X.Z. Xu. (2006). A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127: 621-633. 17081982
García-Martínez, C., C. Morenilla-Palao, R. Planells-Cases, J.M. Merino, and A. Ferrer-Montiel. (2000). Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J. Biol. Chem. 275: 32552-32558. 10931826
García-Sanz, N., P. Valente, A. Gomis, A. Fernández-Carvajal, G. Fernández-Ballester, F. Viana, C. Belmonte, and A. Ferrer-Montiel. (2007). A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J. Neurosci. 27: 11641-11650. 17959807
Gevaert, T., J. Vriens, A. Segal, W. Everaerts, T. Roskams, K. Talavera, G. Owsianik, W. Liedtke, D. Daelemans, I. Dewachter, F. van Leuven, T. Voets, D. de Ridder, and B. Nilius. (2007). Deletion of the transient receptor potential cation channel TRPV4 (Trp12) impairs murine bladder voiding. J. Clin. Invest. 117(11): 3453-3462.
Gopal, S., P. Søgaard, H.A. Multhaupt, C. Pataki, E. Okina, X. Xian, M.E. Pedersen, T. Stevens, O. Griesbeck, P.W. Park, R. Pocock, and J.R. Couchman. (2015). Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J. Cell Biol. 210: 1199-1211. 26391658
Groppi, S., F. Belotti, R.L. Brandão, E. Martegani, and R. Tisi. (2011). Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium 49: 376-386. 21511333
Haladyna, J.N., T. Pastuer, S.S. Riedel, A.L. Perraud, and K.M. Bernt. (2016). Transient potential receptor melastatin-2 (Trpm2) does not influence murine MLL-AF9-driven AML leukemogenesis or in vitro response to chemotherapy. Exp Hematol. [Epub: Ahead of Print] 27033163
Hardie, R.C. and B. Minke. (1993). Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16: 371-376. 7694408
Hoenderop, J.G., A.W. van der Kemp, A. Hartog, S.F. van de Graaf, C.H. van Os, P.H. Willems, and R.J. Bindels. (1999). Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J. Biol. Chem. 274: 8375-8378. 10085067
Hoenderop, J.G.J., T. Voets, S. Hoefs, F. Weidema, J. Prenen, B. Nilius, and R.J.M. Bindels. (2003). Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J. 22: 776-785. 12574114
Hofmann, L., H. Wang, A. Beck, U. Wissenbach, and V. Flockerzi. (2016). A conserved gating element in TRPV6 channels. Cell Calcium. [Epub: Ahead of Print] 28029385
Inoue, K., D. Branigan, and Z.G. Xiong. (2010). Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J. Biol. Chem. 285: 7430-7439. 20048154
Jirku, M., Z. Lansky, L. Bednarova, M. Sulc, L. Monincova, P. Majer, L. Vyklicky, J. Vondrasek, J. Teisinger, and K. Bousova. (2016). The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int J Biochem. Cell Biol. [Epub: Ahead of Print] 27435061
Jo, A.O., M. Lakk, A.M. Frye, T.T. Phuong, S.N. Redmon, R. Roberts, B.A. Berkowitz, O. Yarishkin, and D. Križaj. (2016). Differential volume regulation and calcium signaling in two ciliary body cell types is subserved by TRPV4 channels. Proc. Natl. Acad. Sci. USA 113: 3885-3890. 27006502
John Haynes, W., X.L. Zhou, Z.W. Su, S.H. Loukin, Y. Saimi, and C. Kung. (2008). Indole and other aromatic compounds activate the yeast TRPY1 channel. FEBS Lett. 582: 1514-1518. 18396169
Jordt, S.-E. and D. Julius. (2002). Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 108: 421-430. 11853675
Jordt, S.E., D.M. Bautista, H.H. Chuang, D.D. McKemy, P.M. Zygmunt, E.D. Hogestatt, I.D. Meng, and D. Julius. (2004). Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427: 260-265. 14712238
Kang, L., J. Gao, W.R. Schafer, Z. Xie, and X.Z. Xu. (2010). C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron. 67: 381-391. 20696377
Katz, B., T. Oberacker, D. Richter, H. Tzadok, M. Peters, B. Minke, and A. Huber. (2013). Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo. J Cell Sci 126: 3121-3133. 23687378
Kedei, N., T. Szabo, J.D. Lile, J.J. Treanor, Z. Olah, M.J. Iadarola, and P.M. Blumberg. (2001). Analysis of the native quaternary structure of vanilloid receptor 1. J. Biol. Chem. 276: 28613-28619. 11358970
Kemp, B.J., D.L. Church, J. Hatzold, B. Conradt, and E.J. Lambie. (2009). Gem-1 encodes an SLC16 monocarboxylate transporter-related protein that functions in parallel to the gon-2 TRPM channel during gonad development in Caenorhabditis elegans. Genetics 181: 581-591. 19087963
Kim, J., Y.D. Chung, D. Park, S. Choi, D.W. Shin, H. Soh, H.W. Lee, W. Son, J. Yim, C.-S. Park, M.J. Kernan, and C. Kim. (2003). A TRPV family ion channel required for hearing in Drosophila. Nature 424: 81-82. 12819662
Kim, S.J., G.H. Park, D. Kim, J. Lee, H. Min, E. Wall, C.J. Lee, M.I. Simon, S.J. Lee, and S.K. Han. (2011). Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc. Natl. Acad. Sci. USA 108: 3371-3376. 21300878
Kim, S.J., Y.S. Kim, J.P. Yuan, R.S. Petralia, P.F. Worley, and D.J. Linden. (2003). Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426: 285-291. 14614461
Kiselyov, K., X. Xu, G. Mozhayeva, T. Kuo, I. Pessah, G. Mignery, X. Zhu, L. Birnbaumer, and S. Muallem. (1998). Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396: 478-482. 9853757
Knowles, H., J.W. Heizer, Y. Li, K. Chapman, C.A. Ogden, K. Andreasen, E. Shapland, G. Kucera, J. Mogan, J. Humann, L.L. Lenz, A.D. Morrison, and A.L. Perraud. (2011). Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 108: 11578-11583. 21709234
Krapivinsky, G., L. Krapivinsky, Y. Manasian, and D.E. Clapham. (2014). The TRPM7 Chanzyme Is Cleaved to Release a Chromatin-Modifying Kinase. Cell 157: 1061-1072. 24855944
Kremeyer, B., F. Lopera, J.J. Cox, A. Momin, F. Rugiero, S. Marsh, C.G. Woods, N.G. Jones, K.J. Paterson, F.R. Fricker, A. Villegas, N. Acosta, N.G. Pineda-Trujillo, J.D. Ramírez, J. Zea, M.W. Burley, G. Bedoya, D.L. Bennett, J.N. Wood, and A. Ruiz-Linares. (2010). A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron. 66: 671-680. 20547126
Kühn, F.J., G. Knop, and A. Lückhoff. (2007). The transmembrane segment S6 determines cation versus anion selectivity of TRPM2 and TRPM8. J. Biol. Chem. 282: 27598-27609. 17604279
Latorre, R., C. Zaelzer, and S. Brauchi. (2009). Structure-functional intimacies of transient receptor potential channels. Q. Rev. Biophys. 42: 201-246. 20025796
Launay, P., A. Fleig, A.-L. Perraud, A.M. Scharenberg, R. Penner, and J.-P. Kinet. (2002). TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109: 397-407. 12015988
Laursen, W.J., E.O. Anderson, L.J. Hoffstaetter, S.N. Bagriantsev, and E.O. Gracheva. (2015). Species-specific temperature sensitivity of TRPA1. Temperature (Austin) 2: 214-226. 27227025
Laursen, W.J., S.N. Bagriantsev, and E.O. Gracheva. (2014). TRPA1 channels: chemical and temperature sensitivity. Curr Top Membr 74: 89-112. 25366234
Lee, Y., Y. Lee, J. Lee, S. Bang, S. Hyun, J. Kang, S.T. Hong, E. Bae, B.K. Kaang, and J. Kim. (2005). Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat. Genet. 37: 305-310. 15731759
Leffler, A., A. Lattrell, S. Kronewald, F. Niedermirtl, and C. Nau. (2011). Activation of TRPA1 by membrane permeable local anesthetics. Mol Pain 7: 62. 21861907
Leffler, A., M.J. Fischer, D. Rehner, S. Kienel, K. Kistner, S.K. Sauer, N.R. Gavva, P.W. Reeh, and C. Nau (2008). The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Cl- in Invest 118: 763-776. 18172555
Li, M., J. Du, J. Jiang, W. Ratzan, L.T. Su, L.W. Runnels, and L. Yue. (2007). Molecular Determinants of Mg2+ and Ca2+ Permeability and pH Sensitivity in TRPM6 and TRPM7. J. Biol. Chem. 282(35):25817-25830. 17599911
Liao, B.K., A.N. Deng, S.C. Chen, M.Y. Chou, and P.P. Hwang. (2007). Expression and water calcium dependence of calcium transporter isoforms in zebrafish gill mitochondrion-rich cells. BMC Genomics. 8: 354. 17915033
Liao, M., E. Cao, D. Julius, and Y. Cheng. (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504: 107-112. 24305160
Liedtke, W., Y. Choe, M.A. Martí-Renom, A.M. Bell, C.S. Denis, A. Sali, A.J. Hudspeth, J.M. Friedman and S. Heller (2000). Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103: 525-535. 11081638
Liu X., K.T. Cheng, B.C. Bandyopadhyay, B. Pani, A. Dietrich, B.C. Paria, W.D. Swaim, D. Beech, E. Yildrim, B.B. Singh, L. Birnbaumer, I.S. Ambudkar. (2007a). Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(-/-) mice. Proc Natl Acad Sci U S A. 104: 17542-17547. 17956991
Liu, L., Y. Li, R. Wang, C. Yin, Q. Dong, H. Hing, C. Kim, and M.J. Welsh. (2007). Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450: 294-298. 17994098
Liu, S., C. Guo, Z. Dang, and X. Liang. (2016). Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. Ecotoxicol Environ Saf 137: 256-264. [Epub: Ahead of Print] 27984820
Liu, X., B.B. Singh, and I.S. Ambudkar. (2003). TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J. Biol. Chem. 278: 11337-11343. 12536150
Liu, X., B.C. Bandyopadhyay, B.B. Singh, K. Groschner, and I.S. Ambudkar. (2005). Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J. Biol. Chem. 280: 21600-21606. 15834157
Loukin, S., Z. Su, X. Zhou, and C. Kung. (2010). Forward genetic analysis reveals multiple gating mechanisms of TRPV4. J. Biol. Chem. 285: 19884-19890. 20424166
Luo, J. and H. Hu. (2014). Thermally activated TRPV3 channels. Curr Top Membr 74: 325-364. 25366242
Ma, H.T., Z. Peng, T. Hiragun, S. Iwaki, A.M. Gilfillan, and M.A. Beaven. (2008). Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. J. Immunol. 180: 2233-2239. 18250430
Ma, Y., R. Sugiura, A. Koike, H. Ebina, S.O. Sio, and T. Kuno. (2011). Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One 6: e22421. 21811607
Macpherson, L.J., A.E. Dubin, M.J. Evans, F. Marr, P.G. Schultz, B.F. Cravatt, and A. Patapoutian. (2007). Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445: 541-545. 17237762
Maruyama, Y., T. Ogura, K. Mio, S. Kiyonaka, K. Kato, Y. Mori, and C. Sato. (2007). Three-dimensional Reconstruction Using Transmission Electron Microscopy Reveals a Swollen, Bell-shaped Structure of Transient Receptor Potential Melastatin Type 2 Cation Channel. J. Biol. Chem. 282: 36961-36970. 17940282
Matta, J.A. and G.P. Ahern. (2007). Voltage is a partial activator of rat thermosensitive TRP channels. J. Physiol. 585(Pt 2):469-482. 17932142
Matta, J.A., P.M. Cornett, R.L. Miyares, K. Abe, N. Sahibzada, and G.P. Ahern. (2008). General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc. Natl. Acad. Sci. USA 105: 8784-8789. 18574153
McCleskey E.W. and M.S. Gold. (1999). Ion channels of nociception. Annu. Rev. Physiol. 61: 835-856. 10099712
Mederos y Schnitzler, M., J. Wäring, T. Gudermann, and V. Chubanov. (2008). Evolutionary determinants of divergent calcium selectivity of TRPM channels. FASEB J. 22(5): 1540-1551. 18073331
Mercado, J., A. Gordon-Shaag, W.N. Zagotta, and S.E. Gordon. (2010). Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 30: 13338-13347. 20926660
Minke, B. and B. Cook. (2002). TRP channel proteins and signal transduction. Physiol. Rev. 82: 429-472. 11917094
Mio, K., T. Ogura, and C. Sato. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J Synchrotron Radiat 15: 211-214. 18421141
Moiseenkova-Bell, V.Y., L.A. Stanciu, I.I. Serysheva, B.J. Tobe, and T.G. Wensel. (2008). Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 105: 7451-7455. 18490661
Montell, C. (2005). The TRP superfamily of cation channels. Science STKE 272: 1-24. 15728426
Montell, C. and G.M. Rubin. (1989). Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2: 1313-1323. 2516726
Montell, C., L. Birnbaumer, and V. Flockerzi. (2002). The TRP channels, a remarkably functional family. Cell 108: 595-598. 11893331
Motter, A.L. and G.P. Ahern. (2012). TRPA1 Is a Polyunsaturated Fatty Acid Sensor in Mammals. PLoS One 7: e38439. 22723860
Moussaieff, A., N. Rimmerman, T. Bregman, A. Straiker, C.C. Felder, S. Shoham, Y. Kashman, S.M. Huang, H. Lee, E. Shohami, K. Mackie, M.J. Caterina, J.M. Walker, E. Fride, and R. Mechoulam. (2008). Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J. 22: 3024-3034. 18492727
Mukerji, N., T.V. Damodaran, and M.P. Winn. (2007). TRPC6 and FSGS: the latest TRP channelopathy. Biochim. Biophys. Acta. 1772: 859-868. 17459670
Nadler, M.J.S., M.C. Hermosura, K. Inabe, A.-L. Perraud, Q. Zhu, A.J. Stokes, T. Kurosaki, J.-P. Kinet, R. Penner, A.M. Scharenberg, and A. Fleig. (2001). LTRPC7 is a Mg·ATP-regulated divalent cation channel required for cell viability. Nature 411: 590-594. 11385574
Nilius, B., R. Vennekens, J. Prenen, J.G. Hoenderop, G. Droogmans, and R.J. Bindels. (2001). The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J. Biol. Chem. 276: 1020-1025. 11035011
Numata, T. and Y. Okada. (2008). Proton Conductivity through the Human TRPM7 Channel and Its Molecular Determinants. J. Biol. Chem. 283: 15097-15103. 18390554
Ohara, K., T. Fukuda, H. Okada, S. Kitao, Y. Ishida, K. Kato, C. Takahashi, M. Katayama, K. Uchida, and M. Tominaga. (2015). Identification of Significant Amino Acids in Multiple Transmembrane Domains of Human Transient Receptor Potential Ankyrin 1 (TRPA1) for Activation by Eudesmol, an Oxygenized Sesquiterpene in Hop Essential Oil. J. Biol. Chem. 290: 3161-3171. 25525269
Olah, Z., L. Karai, and M.J. Iadarola. (2001). Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. J. Biol. Chem. 276: 31163-31170. 11333266
Park, J.Y., E.M. Hwang, O. Yarishkin, J.H. Seo, E. Kim, J. Yoo, G.S. Yi, D.G. Kim, N. Park, C.M. Ha, J.H. La, D. Kang, J. Han, U. Oh, and S.G. Hong. (2008). TRPM4b channel suppresses store-operated Ca2+ entry by a novel protein-protein interaction with the TRPC3 channel. Biochem. Biophys. Res. Commun. 368: 677-683. 18262493
Peier, A.M., A. Moqrich, A.C. Hergarden, A.J. Reeve, D.A. Andersson, G.M. Story, T.J. Earley, I Dragoni, P. McIntyre, S. Bevan, and A. Patapoutian. (2002). A TRP channel that senses cold stimuli and menthol. Cell 108: 705-715. 11893340
Peng, J.B., X.Z. Chen, U.V. Berger, P.M. Vassilev, H. Tsukaguchi, E.M. Brown, and M.A. Hediger. (1999). Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J. Biol. Chem. 274: 22739-22746. 10428857
Perraud, A.-L., A. Fleig, C.A. Dunn, L.A. Bagley, P. Launay, C. Schmitz, A.J. Stokes, Q. Zhu, M.J. Bessman, R. Penner, J.-P. Kinet, and A.M. Scharenberg. (2001). ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411: 594-599. 11385575
Phelps, C.B., R.J. Huang, P.V. Lishko, R.R. Wang, and R. Gaudet (2008). Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47: 2476-2484. 18232717
Prawitt, D., T. Enklaar, G. Klemm, B. Gärtner, C. Spangenberg, A. Winterpacht, M. Higgins, J. Pelletier, and B. Zabel. (2000). Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum Mol Genet 9: 203-216. 10607831
Premkumar, L.S. (2001). Interaction between vanilloid receptors and purinergic metabotropic receptors: pain perception and beyond. Proc. Natl. Acad. Sci. USA 98: 6537-6539. 11390988
Putney, J.W., Jr. and R.R. McKay. (1999). Capacitative calcium entry channels. BioEssays 21: 38-46. 10070252
Ramsey, I.S., M. Delling, and D.E. Clapham. ((2006)). An introduction to TRP channels. Annu. Rev. Physiol. 68: 619–647. 16460286
Riera, C.E., M.O. Huising, P. Follett, M. Leblanc, J. Halloran, R. Van Andel, C.D. de Magalhaes Filho, C. Merkwirth, and A. Dillin. (2014). TRPV1 Pain Receptors Regulate Longevity and Metabolism by Neuropeptide Signaling. Cell 157: 1023-1036. 24855942
Rock, M.J., J. Prenen, V.A. Funari, T.L. Funari, B. Merriman, S.F. Nelson, R.S. Lachman, W.R. Wilcox, S. Reyno, R. Quadrelli, A. Vaglio, G. Owsianik, A. Janssens, T. Voets, S. Ikegawa, T. Nagai, D.L. Rimoin, B. Nilius, and D.H. Cohn. (2008). Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat. Genet. 40: 999-1003. 18587396
Roessingh, S., W. Wolfgang, and R. Stanewsky. (2015). Loss of Drosophila melanogaster TRPA1 Function Affects "Siesta" Behavior but Not Synchronization to Temperature Cycles. J Biol Rhythms 30: 492-505. 26459465
Runnels, L.W., L. Yue, and D.E. Clapham. (2001). TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291: 1043-1046. 11161216
Saotome, K., A.K. Singh, M.V. Yelshanskaya, and A.I. Sobolevsky. (2016). Crystal structure of the epithelial calcium channel TRPV6. Nature. [Epub: Ahead of Print] 27296226
Schmitz, C., F. Deason, and A.L. Perraud. (2007). Molecular components of vertebrate Mg2+-homeostasis regulation. Magnes. Res. 20: 6-18. 17536484
Schoeber, J.P., C.N. Topala, X. Wang, R.J. Diepens, T.T. Lambers, J.G. Hoenderop, and R.J. Bindels. (2006). RGS2 inhibits the epithelial Ca2+ channel TRPV6. J. Biol. Chem. 281: 29669-29674. 16895908
Sidi, S., R.W. Friedrich, and T. Nicolson. (2003). NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301: 96-99. 12805553
Simard C., Hof T., Keddache Z., Launay P. and Guinamard R. (2013). The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol. 59:11-9. 23416167
Singaravelu, G., I. Chatterjee, S. Rahimi, M.K. Druzhinina, L. Kang, X.Z. Xu, and A. Singson. (2012). The sperm surface localization of the TRP-3/SPE-41 Ca2+ -permeable channel depends on SPE-38 function in Caenorhabditis elegans. Dev Biol 365: 376-383. 22425620
Sonkusare, S.K., A.D. Bonev, J. Ledoux, W. Liedtke, M.I. Kotlikoff, T.J. Heppner, D.C. Hill-Eubanks, and M.T. Nelson. (2012). Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597-601. 22556255
Starkus, J.G., A. Fleig, and R. Penner. (2010). The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J. Physiol. 588: 1227-1240. 20194125
Story, G.M., A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, and A. Patapoutian. (2003). ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819-829. 12654248
Studer, M. and P.A. McNaughton. (2010). Modulation of single-channel properties of TRPV1 by phosphorylation. J. Physiol. 588: 3743-3756. 20693293
Stumpf, T., Q. Zhang, D. Hirnet, U. Lewandrowski, A. Sickmann, U. Wissenbach, J. Dörr, C. Lohr, J.W. Deitmer, and C. Fecher-Trost. (2008). The human TRPV6 channel protein is associated with cyclophilin B in human placenta. J. Biol. Chem. 283: 18086-18098. 18445599
Suresh K., Servinsky L., Reyes J., Baksh S., Undem C., Caterina M., Pearse DB. and Shimoda LA. (2015). Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4. Am J Physiol Lung Cell Mol Physiol. 309(12):L1467-77. 26453519
Suzuki, M., J. Sato, K. Kutsuwada, G. Ooki, and M. Imai. (1999). Cloning of a stretch-inhibitable nonselective cation channel. J. Biol. Chem. 274: 6330-6335. 10037722
Szabó, T., L. Ambrus, N. Zákány, G. Balla, and T. Bíró. (2015). Regulation of TRPC6 ion channels in podocytes - Implications for focal segmental glomerulosclerosis and acquired forms of proteinuric diseases. Acta Physiol Hung 102: 241-251. 26551740
Thébault, S., G. Cao, H. Venselaar, Q. Xi, R.J. Bindels, and J.G. Hoenderop. (2008). Role of the α-kinase domain in transient receptor potential melastatin 6 channel and regulation by intracellular ATP. J. Biol. Chem. 283: 19999-20007. 18490453
Tóth, B. and L. Csanády. (2012). Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc. Natl. Acad. Sci. USA 109: 13440-13445. 22847436
van de Graaf, S.F.J., J.G.J. Hoenderop, D. Gkika, D. Lamers, J. Prenen, U. Rescher, V. Gerke, O. Staub, B. Nilius, and R.J.M. Bindels. (2003). Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J. 22: 1478-1487. 12660155
Vanden Abeele, F., A. Zholos, G. Bidaux, Y. Shuba, S. Thebault, B. Beck, M. Flourakis, Y. Panchin, R. Skryma, and N. Prevarskaya. (2006). Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J. Biol. Chem. 281: 40174-40182. 17082190
Vennekens, R., A. Menigoz, and B. Nilius. (2012). TRPs in the Brain. Rev Physiol Biochem Pharmacol 163: 27-64. 23184016
Viswanath, V., G.M. Story, A.M. Peier, M.J. Petrus, V.M. Lee, S.W. Hwang, A. Patapoutian, and T. Jegla. (2003). Ion channels: opposite thermosensor in fruitfly and mouse. Nature 423: 822-823. 12815418
Voets, T., B. Nilius, S. Hoefs, A.W.C.M. van der Kemp, G. Droogmans, R.J.M. Bindels, and J.G.J. Hoenderop. (2004). TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 279: 19-25. 14576148
Wang, Y.Y., R.B. Chang, and E.R. Liman. (2010). TRPA1 is a component of the nociceptive response to CO2. J. Neurosci. 30: 12958-12963. 20881114
Weissgerber, P., U. Kriebs, V. Tsvilovskyy, J. Olausson, O. Kretz, C. Stoerger, S. Mannebach, U. Wissenbach, R. Vennekens, R. Middendorff, V. Flockerzi, and M. Freichel. (2012). Excision of Trpv6 gene leads to severe defects in epididymal Ca2+ absorption and male fertility much like single D541A pore mutation. J. Biol. Chem. 287: 17930-17941. 22427671
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Wilkinson, J.A., J.L. Scragg, J.P. Boyle, B. Nilius, and C. Peers. (2008). H2O 2-stimulated Ca2+ influx via TRPM2 is not the sole determinant of subsequent cell death. Pflugers Arch 455: 1141-1151. 18043941
Winn, M.P., P.J. Conlon, K.L. Lynn, M.K. Farrington, T. Creazzo, A.F. Hawkins, N. Daskalakis, S.Y. Kwan, S. Ebersviller, J.L. Burchette, M.A. Pericak-Vance, D.N. Howell, J.M. Vance, and P.B. Rosenberg. (2005). A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801-1804. 15879175
Wong, F., E.L. Schaefer, B.C. Roop, J.N. LaMendola, D. Johnson-Seaton, and D. Shao. (1989). Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron 3: 81-94. 2482778
Woo SK., Kwon MS., Ivanov A., Geng Z., Gerzanich V. and Simard JM. (2013). Complex N-glycosylation stabilizes surface expression of transient receptor potential melastatin 4b protein. J Biol Chem. 288(51):36409-17. 24214984
Xia, R., Z.Z. Mei, H.J. Mao, W. Yang, L. Dong, H. Bradley, D.J. Beech, and L.H. Jiang. (2008). Identification of pore residues engaged in determining divalent cationic permeation in transient receptor potential melastatin subtype channel 2. J. Biol. Chem. 283: 27426-27432. 18687688
Xiao, B., A.E. Dubin, B. Bursulaya, V. Viswanath, T.J. Jegla, and A. Patapoutian. (2008). Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J. Neurosci. 28: 9640-9651. 18815250
Xiao, R. and X.Z. Xu. (2009). Function and regulation of TRP family channels in C. elegans. Pflugers Arch 458: 851-860. 19421772
Xiao, R., B. Zhang, Y. Dong, J. Gong, T. Xu, J. Liu, and X.Z. Xu. (2013). A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152: 806-817. 23415228
Xu, H., I.S. Ramsey, S.A. Kotecha, M.M. Moran, J.A. Chong, D. Lawson, P. Ge, J. Lilly, I. Silos-Santiago, Y. Xie, P.S. DiStefano, R. Curtis, and D.E. Clapham. (2002). TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418: 181-186. 12077604
Xu, X.Z., and P.W. Sternberg. (2003). A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. Cell 114: 285-297. 12914694
Yang, F. and J. Zheng. (2017). Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell. [Epub: Ahead of Print] 28044278
Yang, F., Y. Cui, K. Wang, and J. Zheng. (2010). Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc. Natl. Acad. Sci. USA 107: 7083-7088. 20351268
Yao, J., B. Liu, and F. Qin. (2011). Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc. Natl. Acad. Sci. USA 108: 11109-11114. 21690353
Ye, L., S. Kleiner, J. Wu, R. Sah, R.K. Gupta, A.S. Banks, P. Cohen, M.J. Khandekar, P. Boström, R.J. Mepani, D. Laznik, T.M. Kamenecka, X. Song, W. Liedtke, V.K. Mootha, P. Puigserver, P.R. Griffin, D.E. Clapham, and B.M. Spiegelman. (2012). TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151: 96-110. 23021218
Zakharian, E., C. Cao, and T. Rohacs. (2010). Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J. Neurosci. 30: 12526-12534. 20844147
Zayats V., Samad A., Minofar B., Roelofs KE., Stockner T. and Ettrich R. (2013). Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain. J Mol Model. 19(11):4689-700. 22752543
Zhou, X., Z. Su, A. Anishkin, W.J. Haynes, E.M. Friske, S.H. Loukin, C. Kung, and Y. Saimi. (2007). Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate. Proc. Natl. Acad. Sci. USA. 104: 15555-15559. 17878311
Zimmermann, K., J.K. Lennerz, A. Hein, A.S. Link, J.S. Kaczmarek, M. Delling, S. Uysal, J.D. Pfeifer, A. Riccio, and D.E. Clapham. (2011). Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc. Natl. Acad. Sci. USA 108: 18114-18119. 22025699
Zubcevic, L., M.A. Herzik, Jr, B.C. Chung, Z. Liu, G.C. Lander, and S.Y. Lee. (2016). Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23: 180-186. 26779611