TCDB is operated by the Saier Lab Bioinformatics Group

2.A.23 The Dicarboxylate/Amino Acid:Cation (Na+ or H+) Symporter (DAACS) Family

The members of the DAACS family catalyze Na+ and/or H+ symport together with (a) a Krebs cycle dicarboxylate (malate, succinate, or fumarate), (b) a dicarboxylic amino acid (glutamate or aspartate), (c) a small, semipolar, neutral amino acid (Ala, Ser, Cys, Thr), (d) both neutral and acidic amino acids or (e) most zwitterionic and dibasic amino acids. The bacterial members are of about 450 (420-491) amino acyl residues while the mammalian proteins are of about 550 (503-574) residues in length. These proteins possess between ten and twelve hydrophobic segments per polypeptide chain. Two of them, human EAAT2 (TC #2.A.23.2.2) and E. coli GltP (TC #2.A.23.1.1) have been shown to be homotrimers (Gendreau et al., 2004). A specific topological model in which 7 α-helical TMSs are followed by a reentrant loop-pore structure followed by one final TMS is presented in Slotboom et al. (1999) and Leighton et al. (2002). Possibly, the transporter consists of eight TMSs, and one or two pore-loop structures that dip into the membrane (one between TMSs 6 and 7, the other between TMSs 7 and 8) in a fashion reminiscent of pore-loop structures found in VIC family ion channels (TC#1.A.1) (Grunewald et al., 2002).  This family of transporters has been reviewed (Grewer et al. 2013).

All of the bacterial proteins cluster together on the phylogenetic tree as do the mammalian proteins. The mammalian permeases that transport neutral amino acids cluster separately from those that are specific for the acidic amino acids. Among the mammalian proteins are neuronal excitatory amino acid neurotransmitter permeases. One of these (the GLT-1 L-glutamate/L-aspartate/D-aspartate transporter) has been shown to cotransport the neurotransmitter with 3 Na+ and 1 H+ and to countertransport 1 K+. The EAAT3 carrier (also called the EAAC1 carrier) uses Arg-447 to bind dicarboxylic amino acids in the presence of K+ but not monocarboxylic amino acids (Bendahan et al., 2001). Larsson et al. (2010) have identified the 3rd Na+ binding site and provided evidence for the mechanism of transport.

Some members of the DAACS family from animals, such as EAAT1, EAAT2, EAAT3 and EAAT4, can apparently be induced to function in a 'channel mode' wherein the transporter allows ion passage without being coupled to substrate translocation. This effect may involve a chloride-permeable, anion-selective channel. Some evidence suggests that the N- and C-termini of EAAT3 as well as two histidyl residues (in EAAT4) in the extracellular loop between TMSs 3 and 4 play a role in conversion to the channel mode (Li et al., 2000). The loop between TMSs 3 and 4 functions to allow regulation of this current by Zn2+ (Mitrovic et al., 2001). Distinct conformational states mediate carrier versus channel function, and a dynamic equilibrium exists between the two forms (Borre et al., 2002; Ryan et al., 2002). It is possible to isolate anion permeability mutants in TMS2 that show no change in glutamate transport (Ryan et al., 2004). EAAT4 but not EAAT2 anion channels display voltage-dependent gating that is modified by glutamate (Melzer et al., 2003). Possibly the channel activity is related to their trimeric structures (Gendreau et al., 2004). Torres-Salazar and Fahlke (2007) have reported that neuronal glutamate transporters (EAATs) vary in substrate transport rate but not in unitary anion channel conductance.

The 3-D structure of a member of the DAACS family has been determined (Boudker et al., 2007; Yernool et al., 2004). The putative transporter is a bowl-shaped trimer with a solvent-filled extracellular basin extending halfway across the membrane bilayer. Each protomer harbors 8 TMSs and two reentrant helical hairpins. At the bottom of the basin are three independent binding sites, each cradled by two helical hairpins, reaching from opposite sides of the membrane. There are 3 independent translocation pathways. The first six transmembrane segments form a distorted 'amino-terminal cylinder' and provide all interprotomer contacts, whereas transmembrane segments TM7 and TM8, together with hairpins HP1 and HP2, coalesce to form a highly conserved core within the amino-terminal cylinder. It is proposed that transport of aspartate or glutamate is achieved by movements of the hairpins that allow alternating access to either side of the membrane. Helical hairpin 2 is the extracellular gate that controls access of aspartate and the ions to the internal binding site (Boudker et al., 2007). Molecular simulations have provided evidence for the substrate translocation pathway (Gu et al., 2009). The central cavity in trimeric glutamate transporters restricts ligand diffusion (Leary et al., 2011). 

Excitatory amino acid transporters (EAATs) are essential for terminating glutamatergic synaptic transmission. They are not only coupled glutamate/Na+/H+/K+ transporters but also function as anion-selective channels. EAAT anion channels regulate neuronal excitability, and gain-of-function mutations in these proteins result in ataxia and epilepsy. Machtens et al. 2015 examined the prokaryotic homolog GltPh (TC# 2.A.23.1.5) and mammalian EAATs to determine how these transporters conduct anions. Whereas outward- and inward-facing GltPh conformations are nonconductive, lateral movement of the glutamate transport domain from intermediate transporter conformations results in formation of an anion-selective conduction pathway. Entry of anions into this pathway, and mutations of homologous pore-forming residues had analogous effects on GltPh simulations and EAAT2/EAAT4 measurements of single-channel currents and anion/cation selectivities. These findings provide a mechanistic framework of how neurotransmitter transporters can operate as anion-selective and ligand-gated ion channels (Machtens et al. 2015). 

O-Benzylated l-threo-beta-hydroxyaspartate derivatives have been developed as highly potent inhibitors of EAATs with TFB-TBOA ((2S,3S)-2-amino 3-((3-(4-(trifluoromethyl)benzamido)benzyl)oxy)succinic acid) standing out as low-nanomolar inhibitor (Leuenberger et al. 2016).

The generalized transport reaction catalyzed by members of the DAACS family is:

substrate (dicarboxylate or amino acid) (out) + nM+ [M+ = H+ or Na+] (out) →
substrate (in) + nM+ (in).


References associated with 2.A.23 family:

Akyuz, N., R.B. Altman, S.C. Blanchard, and O. Boudker. (2013). Transport dynamics in a glutamate transporter homologue. Nature 502: 114-118. 23792560
Almilaji, A., C. Munoz, T. Pakladok, I. Alesutan, M. Feger, M. Föller, U.E. Lang, E. Shumilina, and F. Lang. (2013). Klotho Sensitivity of the Excitatory Amino Acid Transporters EAAT3 and EAAT4. PLoS One 8: e70988. 23923038
Antony, J.M., K.K. Ellestad, R. Hammond, K. Imaizumi, F. Mallet, K.G. Warren, and C. Power. (2007). The human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroinflammation and its receptor expression in multiple sclerosis: a role for endoplasmic reticulum chaperones in astrocytes. J Immunol 179: 1210-1224. 17617614
Arriza, J.L., M.P. Kavanaugh, W.A. Fairman, Y.N. Wu, G.H. Murdoch, R.A. North, and S.G. Amara. (1993). Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem. 268: 15329-15332. 8101838
Bendahan, A., A. Armon, N. Madani, M.P. Kavanaugh, and B.I. Kanner. (2001). Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J. Biol. Chem. 275: 37436-37442. 10978338
Besson, M.T., D.B. Ré, M. Moulin, and S. Birman. (2005). High affinity transport of taurine by the Drosophila aspartate transporter dEAAT2. J. Biol. Chem. 280: 6621-6626. 15611131
Borre, L. and B.I. Kanner. (2001). Coupled, but not uncoupled, fluxes in a neuronal glutamate transporter can be activated by lithium ions. J. Biol. Chem. 276: 40396-40401. 11479303
Borre, L., M.P. Kavanaugh, and B.I. Kanner. (2002). Dynamic equilibrium between coupled and uncoupled modes of a neuronal glutamate transporter. J. Biol. Chem. 277: 13501-13507. 11823462
Boudker, O., R.M. Ryan, D. Yernool, K. Shimamoto, and E. Gouaux. (2007). Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445: 387-393. 17230192
Bröer, S. (2008). Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 88: 249-286. 18195088
Bröer, S. (2008). Apical transporters for neutral amino acids: physiology and pathophysiology. Physiology (Bethesda) 23: 95-103. 18400692
Burguière, P., S. Auger, M.-F. Hullo, A. Danchin, and I. Martin-Verstraete. (2004). Three different systems particpate in L-cystine uptake in Bacillus subtilis. J. Bacteriol. 186: 4875-4884. 15262924
Choi, K.D., J.C. Jen, S.Y. Choi, J.H. Shin, H.S. Kim, H.J. Kim, J.S. Kim, and J.H. Choi. (2016). Late-onset episodic ataxia associated with SLC1A3 mutation. J Hum Genet. [Epub: Ahead of Print] 27829685
Dashper, S.G., L. Brownfield, N. Slakeski, P.S. Zilm, A.H. Rogers, and E.C. Reynolds. (2001). Sodium ion-driven serine/threonine transport in Porphyromonas gingivalis. J. Bacteriol. 183: 4142-4148. 11418553
Deutch, C.E., I. Spahija, and C.E. Wagner. (2014). Susceptibility of Escherichia coli to the toxic L-proline analogue L-selenaproline is dependent on two L-cystine transport systems. J Appl Microbiol 117: 1487-1499. 25139244
Estrach S., Lee SA., Boulter E., Pisano S., Errante A., Tissot FS., Cailleteau L., Pons C., Ginsberg MH. and Feral CC. (2014). CD98hc (SLC3A2) loss protects against ras-driven tumorigenesis by modulating integrin-mediated mechanotransduction. Cancer Res. 74(23):6878-89. 25267066
Focke, P.J., P. Moenne-Loccoz, and H.P. Larsson. (2011). Opposite movement of the external gate of a glutamate transporter homolog upon binding cotransported sodium compared with substrate. J. Neurosci. 31: 6255-6262. 21508248
Geertsma ER., Chang YN., Shaik FR., Neldner Y., Pardon E., Steyaert J. and Dutzler R. (2015). Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol. 22(10):803-8. 26367249
Gendreau, S., S. Voswinkel, D. Torres-Salazar, N. Lang, H. Heidtmann, S. Detro-Dassen, G. Schmalzing, P. Hidalgo, and C. Fahlke. (2004). A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J. Biol. Chem. 279: 39505-39512. 15265858
Grewer C., Gameiro A. and Rauen T. (2014). SLC1 glutamate transporters. Pflugers Arch. 466(1):3-24. 24240778
Groeneveld M. and Slotboom DJ. (2010). Na(+):aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph). Biochemistry. 49(17):3511-3. 20349989
Groeneveld M., Weme RG., Duurkens RH. and Slotboom DJ. (2010). Biochemical characterization of the C4-dicarboxylate transporter DctA from Bacillus subtilis. J Bacteriol. 192(11):2900-7. 20363944
Grunewald, M., D. Menaker, and B.I. Kanner. (2002). Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1. J. Biol. Chem. 277: 26074-26080. 11994293
Gu, Y., I.H. Shrivastava, S.G. Amara, and I. Bahar. (2009). Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter. Proc. Natl. Acad. Sci. USA 106: 2589-2594. 19202063
Heimer G., Marek-Yagel D., Eyal E., Barel O., Oz Levi D., Hoffmann C., Ruzzo EK., Ganelin-Cohen E., Lancet D., Pras E., Rechavi G., Nissenkorn A., Anikster Y., Goldstein DB. and Ben Zeev B. (2015). SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum. Clin Genet. 88(4):327-35. 26138499
Heo, S., G. Jung, T. Beuk, H. Höger, and G. Lubec. (2012). Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the Multiple T-maze in C57BL/6J mice. Brain Struct Funct 217: 363-378. 22113856
Hotzy J., Machtens JP. and Fahlke C. (2012). Neutralizing aspartate 83 modifies substrate translocation of excitatory amino acid transporter 3 (EAAT3) glutamate transporters. J Biol Chem. 287(24):20016-26. 22532568
Huttunen, K.M., M. Gynther, J. Huttunen, E. Puris, J.A. Spicer, and W.A. Denny. (2016). A Selective and Slowly Reversible Inhibitor of l-Type Amino Acid Transporter 1 (LAT1) Potentiates Antiproliferative Drug Efficacy in Cancer Cells. J Med Chem. [Epub: Ahead of Print] 27253989
Jiang, J., I.H. Shrivastava, S.D. Watts, I. Bahar, and S.G. Amara. (2011). Large collective motions regulate the functional properties of glutamate transporter trimers. Proc. Natl. Acad. Sci. USA 108: 15141-15146. 21876140
Jiang, X., F. Yang, E. Brailoiu, H. Jakubowski, N.J. Dun, A.I. Schafer, X. Yang, W. Durante, and H. Wang. (2007). Differential regulation of homocysteine transport in vascular endothelial and smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 27: 1976-1983. 17715404
Koch, H.P., J.M. Hubbard, and H.P. Larsson. (2007). Voltage-independent sodium-binding events reported by the 4B-4C loop in the human glutamate transporter excitatory amino acid transporter 3. J. Biol. Chem. 282: 24547-24553. 17588938
Larsson, H.P., X. Wang, B. Lev, I. Baconguis, D.A. Caplan, N.P. Vyleta, H.P. Koch, A. Diez-Sampedro, and S.Y. Noskov. (2010). Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model. Proc. Natl. Acad. Sci. USA 107: 13912-13917. 20634426
Leary, G.P., D.C. Holley, E.F. Stone, B.R. Lyda, L.V. Kalachev, and M.P. Kavanaugh. (2011). The central cavity in trimeric glutamate transporters restricts ligand diffusion. Proc. Natl. Acad. Sci. USA 108: 14980-14985. 21873219
Leighton, B.H., R.P. Seal, K. Shimamoto, and S.G. Amara. (2002). A hydrophobic domain in glutamate transporters forms an extracellular helix associated with the permeation pathway for substrates. J. Biol. Chem. 277: 29847-29855. 12015317
Leighton, B.H., R.P. Seal, S.D. Watts, M.O. Skyba, and S.G. Amara. (2006). Structural rearrangements at the translocation pore of the human glutamate transporter, EAAT1. J. Biol. Chem. 281: 29788-29796. 16877378
Leinenweber, A., J.P. Machtens, B. Begemann, and C. Fahlke. (2011). Regulation of glial glutamate transporters by C-terminal domains. J. Biol. Chem. 286: 1927-1937. 21097502
Leuenberger, M., A. Ritler, A. Simonin, M.A. Hediger, and M. Lochner. (2016). Concise Asymmetric Synthesis and Pharmacological Characterization of All Stereoisomers of Glutamate Transporter Inhibitor TFB-TBOA and Synthesis of EAAT Photoaffinity Probes. ACS Chem Neurosci. [Epub: Ahead of Print] 26918289
Li, J., J. Fei, F. Huang, L.H. Guo, and W. Schwarz. (2000). Functional significance of N- and C-terminus of the amino acid transporters EAAC1 and ASCT1: characterization of chimeric transporters. Biochim. Biophys. Acta 1467: 338-346. 11030592
Machtens, J.P., D. Kortzak, C. Lansche, A. Leinenweber, P. Kilian, B. Begemann, U. Zachariae, D. Ewers, B.L. de Groot, R. Briones, and C. Fahlke. (2015). Mechanisms of anion conduction by coupled glutamate transporters. Cell 160: 542-553. 25635461
McIlwain BC., Vandenberg RJ. and Ryan RM. (2015). Transport rates of a glutamate transporter homologue are influenced by the lipid bilayer. J Biol Chem. 290(15):9780-8. 25713135
Melzer, N., A. Biela, and C. Fahlke. (2003). Glutamate modifies ion conduction and voltage-dependent gating of excitatory amino acid transporter-associated anion channels. J. Biol. chem. 278: 50112-50119. 14506254
Mitrovic, A.D., F. Plesko, and R.J. Vandenberg. (2001). Zn2+ inhibits the anion conductance of the glutamate transporter EAAT4. J. Biol. Chem. 276: 26071-26076. 11352900
Mortensen OV., Liberato JL., Coutinho-Netto J., Dos Santos WF. and Fontana AC. (2015). Molecular determinants of transport stimulation of EAAT2 are located at interface between the trimerization and substrate transport domains. J Neurochem. 133(2):199-210. 25626691
Myles-Worsley, M., J. Tiobech, S.R. Browning, J. Korn, S. Goodman, K. Gentile, N. Melhem, W. Byerley, S.V. Faraone, and F.A. Middleton. (2013). Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family. Am J Med Genet B Neuropsychiatr Genet 162: 87-95. 23341099
Nam, H.S., A.J. Anderson, K.Y. Yang, B.H. Cho, and Y.C. Kim. (2006). The dctA gene of Pseudomonas chlororaphis O6 is under RpoN control and is required for effective root colonization and induction of systemic resistance. FEMS Microbiol. Lett. 256: 98-104. 16487325
Nam, H.S., M. Spencer, A.J. Anderson, B.H. Cho, and Y.C. Kim. (2003). Transcriptional regulation and mutational analysis of a dctA gene encoding an organic acid transporter protein from Pseudomonas chlororaphis O6. Gene 323: 125-131. 14659885
Napolitano L., Scalise M., Galluccio M., Pochini L., Albanese LM. and Indiveri C. (2015). LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. Int J Biochem Cell Biol. 67:25-33. 26256001
Nicklin, P., P. Bergman, B. Zhang, E. Triantafellow, H. Wang, B. Nyfeler, H. Yang, M. Hild, C. Kung, C. Wilson, V.E. Myer, J.P. MacKeigan, J.A. Porter, Y.K. Wang, L.C. Cantley, P.M. Finan, and L.O. Murphy. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136: 521-534. 19203585
Ogawa, W., Y.-M. Kim, T. Mizushima, and T. Tsuchiya. (1998). Cloning and expression of the gene for Na+-coupled serine transporter from Escherichia coli, and characteristics of the transporter. J. Bacteriol. 180: 6749-6752. 9852024
Palacín, M., R. Estévez, J. Bertran, and A. Zorzano. (1998). Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78: 969-1054. 9790568
Rahman, M., F. Ismat, L. Jiao, J.M. Baldwin, D.J. Sharples, S.A. Baldwin, and S.G. Patching. (2016). Characterisation of the DAACS Family Escherichia coli Glutamate/Aspartate-Proton Symporter GltP Using Computational, Chemical, Biochemical and Biophysical Methods. J. Membr. Biol. [Epub: Ahead of Print] 28025687
Reizer, J., A. Reizer, and M.H. Saier, Jr. (1994). A functional superfamily of sodium/solute symporters. Biochim. Biophys. Acta 1197: 133-166. 8031825
Reyes, N., C. Ginter, and O. Boudker. (2009). Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462: 880-885. 19924125
Rong, X., F. Tan, X. Wu, X. Zhang, L. Lu, X. Zou, and S. Qu. (2016). TM4 of the glutamate transporter GLT-1 experiences substrate-induced motion during the transport cycle. Sci Rep 6: 34522. 27698371
Rose, E.M., J.C. Koo, J.E. Antflick, S.M. Ahmed, S. Angers, and D.R. Hampson. (2009). Glutamate transporter coupling to Na,K-ATPase. J. Neurosci. 29: 8143-8155. 19553454
Ryan, R.M. and R.J. Vandenberg. (2002). Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J. Biol. Chem. 277: 13494-13500. 11815608
Ryan, R.M., A.D. Mitrovic, and R.J. Vandenberg. (2004). The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J. Biol. Chem. 279: 20742-20751. 14982939
Ryan, R.M., E.L. Compton, and J.A. Mindell. (2009). Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J. Biol. Chem. 284: 17540-17548. 19380583
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Slotboom, D.J., W.N. Konings, and J.S. Lolkema. (2001). The structure of glutamate transporters shows channel-like features. FEBS Lett. 492: 183-186. 11257491
Slotboom, D.J., W.N. Konings, and J.S. Lolkema. (1999). Structural features of the glutamate transporter family. Microbiol. Mol. Biol. Rev. 63: 293-307. 10357852
Stolzenberg, S., G. Khelashvili, and H. Weinstein. (2012). Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter homologue GltPh. J Phys Chem B 116: 5372-5383. 22494242
Tao, Z., N. Rosental, B.I. Kanner, A. Gameiro, J. Mwaura, and C. Grewer. (2010). Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101. J. Biol. Chem. 285: 17725-17733. 20378543
Tao, Z., Z. Zhang, and C. Grewer. (2006). Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1. J. Biol. Chem. 281: 10263-10272. 16478724
Teichman, S., S. Qu, and B.I. Kanner. (2009). The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters. Proc. Natl. Acad. Sci. USA 106: 14297-14302. 19706515
Torres-Salazar D., Jiang J., Divito CB., Garcia-Olivares J. and Amara SG. (2015). A Mutation in Transmembrane Domain 7 (TM7) of Excitatory Amino Acid Transporters Disrupts the Substrate-dependent Gating of the Intrinsic Anion Conductance and Drives the Channel into a Constitutively Open State. J Biol Chem. 290(38):22977-90. 26203187
Torres-Salazar, D. and C. Fahlke. (2007). Neuronal Glutamate Transporters Vary in Substrate Transport Rate but Not in Unitary Anion Channel Conductance. J. Biol. Chem. 282(48): 34719-34726. 17908688
Unden, G., S. Wörner, and C. Monzel. (2016). Cooperation of Secondary Transporters and Sensor Kinases in Transmembrane Signalling: The DctA/DcuS and DcuB/DcuS Sensor Complexes of Escherichia coli. Adv Microb Physiol 68: 139-167. 27134023
Vandenberg RJ., Handford CA., Campbell EM., Ryan RM. and Yool AJ. (2011). Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1. Biochem J. 439(2):333-40. 21732909
Wang, H., A.M. Rascoe, D.C. Holley, E. Gouaux, and M.P. Kavanaugh. (2013). Novel dicarboxylate selectivity in an insect glutamate transporter homolog. PLoS One 8: e70947. 23951049
Wieland, H., S. Ullrich, F. Lang, and B. Neumeister. (2005). Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol. Microbiol. 55: 1528-1537. 15720558
Witan J., Bauer J., Wittig I., Steinmetz PA., Erker W. and Unden G. (2012). Interaction of the Escherichia coli transporter DctA with the sensor kinase DcuS: presence of functional DctA/DcuS sensor units. Mol Microbiol. 85(5):846-61. 22780562
Yernool, D., O. Boudker, Y. Jin, and E. Gouaux. (2004). Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431: 811-818. 15483603
Yurgel, S., M.W. Mortimer, K.N. Rogers, and M.L. Kahn. (2000). New substrates for the dicarboxylate transport system of Sinorhizobium meliloti. J. Bacteriol. 182: 4216-4221. 10894729
Zarbiv, R., M. Grunewald, M.P. Kavanaugh, and B.I. Kanner. (1998). Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue. J. Biol. Chem. 273: 14231-14237. 9603927
Zhang, Y., X. Zhang, and S. Qu. (2014). Cysteine mutagenesis reveals alternate proximity between transmembrane domain 2 and hairpin loop 1 of the glutamate transporter EAAT1. Amino Acids 46: 1697-1705. 24692063
Zou, S., J.D. Pita-Almenar, and A. Eskin. (2011). Regulation of glutamate transporter GLT-1 by MAGI-1. J Neurochem 117: 833-840. 21426345