TCDB is operated by the Saier Lab Bioinformatics Group

 

2.A.28 The Bile Acid:Na Symporter (BASS) Family

Functionally characterized members of the BASS family catalyze Na :bile acid symport. These systems have been identified in intestinal, liver and kidney tissues of animals, and at least three isoforms are present in a single species such as humans. The BASS family is also called the Solute Carrier Family 10.

A BASS in the apical membrane of the human ileal intestine catalyzes the electrogenic uptake of bile acids with a stoichiometry of bile acid:Na of 1:2. This protein is associated with the 16 kDa subunit c of the vacuolar proton pump (Sun et al., 2004). This may account for its apical location. Thus, the vacuolar proton pump associated apical sorting machinery may be used to sort the apical Na :bile symporter.

Proteins of the BASS family vary in size from about 340 to 480 amino acyl residues and possess 7 to 10 putative transmembrane spanners (TMSs). The bile acid binding site appears to be localized to the last TMS (last 60 residues) (Kramer et al., 2001). The BASS family belongs to the BART superfamily (Mansour et al., 2007)

These symporters exhibit broad specificity, taking up a variety of non bile organic compounds as well as taurocholate and other bile salts. Homologues are found in plants, yeast, archaea and bacteria. For example, functionally uncharacterized homologues are present in Synechocystis (292 aas; gbD90911) and Bacillus subtilis (283 aas; spP55190; Z99104). The bacterial homologues exhibit 6-10 putative TMSs. Because the family is represented in widely divergent organisms, it is probably ubiquitous.

The rat liver Na /taurocholate cotransporter is subject to elaborate regulation in response to cyclic AMP and cell swelling (McConkey et al., 2004; Webster et al., 2000). It has two N-terminal, N-linked carbohydrate sites and two Tyr-based basolateral sorting motifs at its carboxyl terminus (YEKI and YKAA). The former targets the protein to the apical membrane in the absence of the latter, but the latter overrides the former, targeting the protein to the basolateral membrane (Sun et al., 2001). The ileal homologue has a 14-residue cytoplasmic tail with a β-turn structure that targets the protein to the apical membrane (Sun et al., 2003).

The human orthologue of the rat Na taurocholate symporter (TC #2.A.28.1.1) (NTCP; SLC10A1) exhibits multiple single nucleotide polymorphisms in populations of European, African, Chinese and Hispanic people (Ho et al., 2004). Four nonsynonymous single nucleotide polymorphisms are associated with significant loss of transport function or change in substrate specificity. One form, found in Chinese Americans does not catalyze bile acid uptake but is normal for estrone sulfate uptake. This transporter is responsible for maintenance of enterohepatic recirculation of bile acids (Ho et al., 2004).

High cholesterol levels greatly increase the risk of cardiovascular disease. About 50 per cent of cholesterol is eliminated from the body by its conversion into bile acids. However, bile acids released from the bile duct are constantly recycled, being reabsorbed in the intestine by the apical sodium-dependent bile acid transporter (ASBT, also known as SLC10A2). It has been shown that plasma cholesterol levels are considerably lowered by specific inhibitors of ASBT. Hu et al. (2011) reported the crystal structure of a bacterial homologue of ASBT from Neisseria meningitidis (ASBT(NM)) at 2.2 Å (3ZUY). ASBT(NM) contains two inverted structural repeats of five transmembrane helices. A core domain of six helices harbours two sodium ions, and the remaining four helices pack in a row to form a flat, 'panel'-like domain. Overall, the architecture of the protein is similar to that of the sodium/proton antiporter NhaA. The ASBT(NM) structure was captured with the substrate taurocholate present, bound between the core and panel domains in a large, inward-facing, hydrophobic cavity. Residues near this cavity have been shown to affect the binding of specific inhibitors of human ASBT.

The SLC10 family includes seven genes containing 1-12 exons that encode proteins in humans with sequence lengths of 348-477 amino acids (Döring et al. 2012). Only three out of seven (i.e. SLC10A1, SLC10A2, and SLC10A6) show sodium-dependent uptake of organic substrates across the cell membrane. These include the uptake of bile salts, sulfated steroids, sulfated thyroidal hormones, and certain statin drugs by SLC10A1 (Na+-taurocholate cotransporting polypeptide (NTCP; TC# 2..A.28.1.9)), the uptake of bile salts by SLC10A2 (apical sodium-dependent bile acid transporter (ASBT; TC#2.A.28.1.2)), and uptake of sulfated steroids and sulfated taurolithocholate by SLC10A6 (sodium-dependent organic anion transporter (SOAT; TC# 2.A.28.1.4)). Other members of the family are orphan carriers not all localized in the cell membrane. NTCP and ASBT are carriers for bile salts that establish their enterohepatic circulation. Information is available concerning their 2D and 3D membrane topologies, structure-transport relationships, and ligand and sodium-binding sites. The putative 3D structures have been deduced from the crystal structure of a bacterial homolog, ASBT(NM) (Döring et al. 2012). Knowledge about bile acid synthesis, bile acid hormonal functions, and individual members of the family in terms of expression, localization, substrate pattern, and protein topologies with emphasis on the three functional SLC10 carrier members is presented by (Döring et al. 2012).

The generalized transport reaction catalyzed by members of the BASS family is:

organic acid (out) + Na+ (out) → organic acid (in) + Na+ (in).

 

This family belongs to the: BART Superfamily.

References associated with 2.A.28 family:

da Silva, T.C., N. Hussainzada, C.M. Khantwal, J.E. Polli, and P.W. Swaan. (2011). Transmembrane helix 1 contributes to substrate translocation and protein stability of bile acid transporter SLC10A2. J. Biol. Chem. 286: 27322-27332. 21646357
Döring, B., T. Lütteke, J. Geyer, and E. Petzinger. (2012). The SLC10 carrier family: transport functions and molecular structure. Curr Top Membr 70: 105-168. 23177985
Furumoto, T., T. Yamaguchi, Y. Ohshima-Ichie, M. Nakamura, Y. Tsuchida-Iwata, M. Shimamura, J. Ohnishi, S. Hata, U. Gowik, P. Westhoff, A. Bräutigam, A.P. Weber, and K. Izui. (2011). A plastidial sodium-dependent pyruvate transporter. Nature 476: 472-475. 21866161
Geyer J., B. Doring, K. Meerkamp, B. Ugele, N. Bakhiya, C.F. Fernandes, J.R. Godoy, H. Glatt, E. Petzinger. (2007). Cloning and functional characterization of human sodium-dependent organic anion transporter (SLC10A6). J. Biol. Chem. 2007 282: 19728-19741. 17491011
Geyer J., J.R. Godoy, E. Petzinger. (2004). Identification of a sodium-dependent organic anion transporter from rat adrenal gland. Biochem. Biophys. Res. Commun. 316: 300-306. 15020217
Gigolashvili, T., R. Yatusevich, I. Rollwitz, M. Humphry, J. Gershenzon, and U.I. Flügge. (2009). The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Plant Cell 21: 1813-1829. 19542295
González, P.M., N. Hussainzada, P.W. Swaan, A.D. Mackerell, Jr, and J.E. Polli. (2012). Putative irreversible inhibitors of the human sodium-dependent bile acid transporter (hASBT; SLC10A2) support the role of transmembrane domain 7 in substrate binding/translocation. Pharm Res 29: 1821-1831. 22354836
Hagenbuch, B. (1997). Molecular properties of hepatic uptake systems for bile acids and organic acids. J. Membr. Biol. 160: 1-8. 9351887
Ho, R.H., B.F. Leake, R.L. Roberts, W. Lee, and R.B. Kim. (2004). Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J. Biol. Chem. 279: 7213-7222. 14660639
Hu, N.J., S. Iwata, A.D. Cameron, and D. Drew. (2011). Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478: 408-411. 21976025
Khantwal, C.M. and P.W. Swaan. (2008). Cytosolic half of transmembrane domain IV of the human bile acid transporter hASBT (SLC10A2) forms part of the substrate translocation pathway. Biochemistry 47: 3606-3614. 18311924
Kramer, W., F. Girbig, H. Glombik, D. Corsiero, S. Stengelin, and C. Weyland. (2001). Identification of a ligand-binding site in the Na+/bile acid cotransporting protein from rabbit ileum. J. Biol. Chem. 276: 36020-36027. 11447228
McConkey, M., H. Gillin, C.R.L. Webster, and M.S. Anwer. (2004). Cross-talk between protein kinases Cζ and B in cyclic AMP-mediated sodium taurocholate co-transporting polypeptide translocation in hepatocytes. J. Biol. Chem. 279: 20882-20888. 15007074
Rabus, R., D.L. Jack, D.J. Kelly and M.H. Saier, Jr. (1999). TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. Microbiology 145: 3431-3445. 10627041
Rao, A., J. Haywood, A.L. Craddock, M.G. Belinsky, G.D. Kruh, and P.A. Dawson. (2008). The organic solute transporter α-beta, Ostα-Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc. Natl. Acad. Sci. USA 105: 3891-3896. 18292224
Reizer, J., A. Reizer and M.H. Saier, Jr. (1994). A functional superfamily of sodium/solute symporters. Biochim. Biophys. Acta 1197: 133-166. 8031825
Russell, D.W. (1999). Nuclear orphan receptors control cholesterol catabolism. Cell 97: 539-542. 10367881
Sabit, H., S.S. Mallajosyula, A.D. Mackerell, Jr, and P.W. Swaan. (2013). Transmembrane Domain II of the Human Bile Acid Transporter SLC10A2 Coordinates Sodium Translocation. J. Biol. Chem. [Epub: Ahead of Print] 24045943
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Sun, A.-Q., M.A. Arrese, L. Zeng, I. Swaby, M.-M. Zhou, and F.J. Suchy. (2001). The rat liver Na+/bile acid cotransporter: importance of the cytoplasmic tail to funtion and plasma membrane targeting. J. Biol. Chem. 276: 6825-6833. 11112779
Sun, A.-Q., N. Balasubramaniyan, C.-J. Liu, M. Shahid, and F.J. Suchy. (2004). Association of the 16-kDa subunit c of vacuolar proton pump with the ileal Na+-dependent bile acid transporter. Protein-protein interaction and intracellular trafficking. J. Biol. Chem. 279: 16295-16300. 14752118
Sun, A.-Q., R. Salkar, Sachchidanand, S. Xu, L. Zeng, M.-M. Zhou, and F.J. Suchy. (2003). A 14-amino acid sequence with a β-turn structure is required for apical membrane sorting of the rat ileal bile acid transporter. J. Biol. Chem. 278: 4000-4009. 12435749
Sun, A.Q., N. Balasubramaniyan, H. Chen, M. Shahid, and F.J. Suchy. (2006). Identification of functionally relevant residues of the rat ileal apical sodium-dependent bile acid cotransporter. J. Biol. Chem. 281: 16410-16418. 16608845
Webster, C.R., C.J. Blanch, J. Phillips, and M.S. Anwer. (2000). Cell swelling-induced translocation of rat liver Na+/taurocholate cotransport polypeptide is mediated via the phosphoinositide 3-kinase signaling pathway. J. Biol. Chem. 275: 29754-29760. 10889198
Weinman, S.A., M.W. Carruth, and P.A. Dawson. (1998). Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J. Biol. Chem. 273: 34691-34695. 9856990
Yan, H., G. Zhong, G. Xu, W. He, Z. Jing, Z. Gao, Y. Huang, Y. Qi, B. Peng, H. Wang, L. Fu, M. Song, P. Chen, W. Gao, B. Ren, Y. Sun, T. Cai, X. Feng, J. Sui, and W. Li. (2012). Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. elife 1: e00049. 23150796