TCDB is operated by the Saier Lab Bioinformatics Group

2.A.29 The Mitochondrial Carrier (MC) Family

Permeases of the MC family (the human SLC25 family) possess six transmembrane β-helical spanners. The proteins are of fairly uniform size of about 300 residues. They arose by tandem intragenic triplication in which a genetic element encoding two spanners gave rise to one encoding six spanners (Palmieri 2012). This event may have occurred less than 2 billion years ago when mitochondria first developed their specialized endosymbiotic functions within eukaryotic cells. Members of the family are found exclusively in eukaryotic organelles although they are nuclearly encoded. Most are found in mitochondria, but some are found in peroxisomes of animals, in hydrogenosomes of anaerobic fungi, and in amyloplasts of plants. Members of the MC family are functional and structural monomers although early reports indicated that they are dimers (Bamber et al., 2006, 2007). Many of them preferentially catalyze the exchange of one solute for another (antiport). Fifteen paralogues of the MC family are encoded within the genome of Saccharomyces cerevisiae. Fifty have been identified in humans. 58 in A. thaliana and 35 in S. cerevisiae. The functions of many of the human homologues are unknown, but most of the yeast homologues have been functionally identified. Functional aspects have been reviewed by Palmieri (2004), Palmieri et al. (2006) and Plamieri and Pierri (2010).  Diseases caused by defects of mitochondrial carriers are reviewed by Palmieri et al. (2008) and by Gutiérrez-Aguilar and Baines 2013.Residues involved in substrate binding in the middle of the transporter and gating have been identified and analyzed (Monné et al. 2013).

Members of the mitochondrial carrier family are involved in transporting keto acids, amino acids, nucleotides, inorganic ions and co-factors across the mitochondrial inner membrane. The transporters are thought to share the same structural fold, which consists of six trans-membrane alpha-helices and three matrix helices, arranged with threefold pseudo-symmetry. During the transport cycle two salt bridge networks on either side of the central cavity might regulate access to a single substrate binding site in an alternating fashion. In the case of proton-substrate symporters, the substrate binding sites contain negatively charged residues that are proposed to be involved in proton transport (Kunji and Robinson, 2010).

The high resolution 3-D structure of the human homologues one MC family member, the bovine ATP/ADP antiporter (TC #2.A.29.1.1), has been solved by x-ray crystallography to 2.2 Å resolution (Pebay-Peyroula et al., 2003; Klingenberg et al., 2008)). The carrier was crystalized in complexation with the inhibitor, carboxyatractyloside. The six TMSs (with the N- and C-termini normally facing the cytoplasmic side of the membrane and the three hairpin loops of the repeat sequences facing the matrix) form a compact barrel domain which shows a deep cone-shaped depression at the surface facing the intermembrane space. At its base was found the signature sequence of these nucleotide carriers (R R R M M M). The cavity has a maximal diameter of 20 Å and a depth of 30 Å. The fold of the three repeat elements is very similar. Each odd-numbered helix exhibits a sharp kink, due to a conserved prolyl residue located in the conserved P X(D/E) X X (K/R) motif, characteristic of all mitochondrial carriers. The even-numbered helices pass straight through the membrane without a kink. The structure reveals large hydrophilic surfaces in the interior of the conical pit, due to the weak hydrophobicities of these proteins. A positive electrostatic surface potential on the matrix side and at the bottom of the pit provides the force for anionic substrate binding. Two lipid molecules, both cardiolipin molecules, are tightly bound to the carrier.

The mitochondrial uncoupling protein 2 structure has been determined by NMR molecular fragment searching (Berardi et al., 2011). UCP2 closely resembles the bovine ADP/ATP carrier, but the relative orientations of the helical segments are different, resulting in a wider opening on the matrix side of the inner membrane. Nitroxide-labelled GDP binds inside the channel and seems to be closer to transmembrane helices 1-4 (Berardi et al., 2011).

The transport substrates of MC family members may bind to the bottom of the cavity, and translocation results in a transient transition from a 'pit' to a 'channel' conformation (Kunji and Robinson, 2006; Robinson and Kunji, 2006). The inhibitor, carboxyatractyloside, probably binds where ADP binds, in the pit on the outer surface, thus blocking the transport cycle. Another inhibitor, bongkrekic acid, is believed to stabilize a second conformation, with the pit facing the matrix. In this conformation, the inhibitor may bind to the ATP-binding site. Functional and structural roles for residues in the TMSs have been proposed (Cappello et al., 2006, 2007). The mitochondrial carrier signature, Px[D/E]xx[K/R], of carriers is probably involved both in the biogenesis and in the transport activity of these proteins (Zara et al., 2007). A homologue has been identified in the mimivirus genome and shown to be a transporter for dATP and dTTP (Monné et al., 2007).

One of the MC family members, the uncoupling protein, UCP1 (TC# 2.A.29.3.1), functions to dissipate the proton motive force, thereby generating heat. This protein has been shown to be capable of transporting fatty acids, long chain alkylsulfonates and chloride. It is believed to allow transport of protons down their electrochemical gradient in a cyclic, fatty acid-dependent process by first exporting fatty acyl anions and then allow the free diffusion of the protonated fatty acid across the bilayer into the mitochondrion. UNC1 is therfore probably an anion translocator that may not require that transport occurs by an antiport mechanism. The fatty acid behaves as a cycling protonophore (Garlid et al., 2000). UNC1 uses coenzyme Q (ubiquinone) as a cofactor (Echtay et al., 2000). Like many other MC family members, uncoupling proteins are found in the mitochondria of plants as well as animals. Various compounds such as the reactive aldehyde (produced under oxidative stress conditions), 4-hydroxy-2-nonenal, as well as trans-retinal and other 2-alkenals activate uncoupling via UCP1-3 (TC #2.A.29.3.1) as well as the ATP/ADP antiporter (TC #2.A.29.1.1) (Echtay et al., 2003).

Mitochondrial uncoupling protein 1 (UCP1) is responsible for nonshivering thermogenesis in brown adipose tissue (BAT). Upon activation by long-chain fatty acids (LCFAs), UCP1 increases the conductance of the inner mitochondrial membrane (IMM) to make BAT mitochondria generate heat rather than ATP. UCP1 transports H+. UCP1 is an LCFA anion/H+ symporter (Fedorenko et al. 2012), but the LCFA anions cannot dissociate from UCP1 due to hydrophobic interactions established by their hydrophobic tails, and UCP1 effectively operates as an H+ carrier activated by LCFA. A similar LCFA-dependent mechanism of transmembrane H+ transport may be employed by other UCP members and be responsible for mitochondrial uncoupling and regulation of metabolic efficiency in various organisms and tissues.

Mitochondrial transporters have 3 homologous repeats and a structure with pseudosymmetry. Each repeat is folded into 2 transmembrane α-helices linked by a short α-helix on the matrix side and contains the signature motif PX[DE]XX[RK]. The proline residues kink the odd-numbered transmembrane α-helices, and the charged residues form a salt-bridge network connecting the C-terminal ends of the transmembrane α-helices, closing the transporter on the matrix side. During the transport cycle, the carriers form states in which the substrate-binding state of the carrier is open to the mitochrondrial intermembrane space and matrix, respectively. According to the single binding center-gating pore mechanism, interconversion of the 2 conformational states via a transition intermediate leads to substrate translocation. In the cytoplasmic state, a central substrate-binding site has been identified by applying chemical and distance constraints to comparative models. The substrates bind to 3 major sites on the even-numbered α-helices, which are related by symmetry and located approximately in the middle of the membrane. Yeast ADP/ATP carriers function as monomers (Bamberg et al., 2007).

Residues that are important for the transport mechanism are likely to be symmetrical, whereas residues involved in substrate binding will be asymmetrical reflecting the asymmetry of the substrates. By scoring the symmetry of residues in the sequence repeats, Robinson et al. (2008) identified the substrate-binding sites and salt bridge networks that are important for transport. The symmetry analyses provides an assessment of the role of residues and provides clues to the chemical identities of substrates of uncharacterized transporters.

The mitochondrion is one of the defining characteristics of eukaryotic cells, and to date, no eukaryotic lineage has been shown to have lost mitochondria entirely. In certain anaerobic or microaerophilic lineages, however, the mitochondrion has become severely reduced; it lacks a genome and no longer synthesizes ATP. One example of such a reduced organelle, called the mitosome, is found in microsporidian parasites. Only a few mitosomal proteins are encoded in the complete genome of the microsporidian, Encephalitozoon cuniculi, no proteins of the mitochondrial carrier family were identified. However, the microsporidian, Antonospora locustae, has a protein that is heterologously targeted to mitochondria in Saccharomyces cerevisiae (Williams et al., 2008). The protein is phylogenetically allied to the NAD+ transporter of S. cerevisiae, but it has high specificity for ATP and ADP when expressed in E. coli. An ADP/ATP carrier may provide ATP for essential ATP-dependent mitosomal processes such as Hsp70-dependent protein import and export of iron-sulfur clusters to the cytosol.

BID, a proapoptotic BCL-2 family member, plays an essential role in the tumor necrosis factor alpha (TNF-alpha)/Fas death receptor pathway in vivo. Activation of the TNF-R1 receptor results in the cleavage of BID into truncated BID (tBID), which translocates to the mitochondria and induces the activation of BAX or BAK. In TNF-alpha-activated FL5.12 cells, tBID becomes part of a 45-kDa cross-linkable mitochondrial complex. Grinberg et al. (2005) described the biochemical purification of this complex and the identification of mitochondrial carrier homolog 2 (Mtch2; TC# 2.A.29.25.2) as part of this complex. Mtch2 is similar to members of the mitochondrial carrier family. Mtch2 is an integral outer membrane protein exposed on the surface of mitochondria. Mtch2 resides in a protein complex of ca. 185 kDa, and the addition of TNF-alpha to these cells leads to the recruitment of tBID and BAX to this complex. Thus, Mtch2 is a mitochondrial target of tBID. The Mtch2-resident complex probably participates in the mitochondrial apoptotic program (Grinberg et al., 2005; Gross, 2005). 

The ADP/ATP carrier is electrogenic (electrophoretic), the GTP/GDP carrier is dependent on the pH gradient, the aspartate/glutamate carrier is dependent on both, and the oxoglutarate/malate carrier is independent of them (Monné and Palmieri 2014). The bovine ADP/ATP carrier consists of a six-transmembrane alpha-helix bundle with a pseudo-threefold symmetry and a closed matrix gate. By using this structure as a template in homology modeling, residues engaged in substrate binding and the formation of a cytoplasmic gate in MCs have been proposed. The functional importance of the residues of the binding site, the matrix, and the cytoplasmic gates is supported by transport activities of different MCs with single point mutations. Cumulative evidence has been used to postulate a general transport mechanism for MCs (Monné and Palmieri 2014).

The generalized transport reaction for carriers of the MC family is:

S1 (out) + S2 (in) ⇌ S1 (in) + S2 (out).

 

This family belongs to the: Mitochondrial Carrier (MC) Superfamily.

References associated with 2.A.29 family:

Agrimi, G., A. Russo, C.L. Pierri, and F. Palmieri. (2012). The peroxisomal NAD+ carrier of Arabidopsis thaliana transports coenzyme A and its derivatives. J. Bioenerg. Biomembr. 44: 333-340. 22555559
Agrimi, G., A. Russo, P. Scarcia, and F. Palmieri. (2012). The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochem. J. 443: 241-247. 22185573
Ahringer, J. (1995). Embryonic tissue differentiation in Caenorhabditis elegans requires dif-1, a gene homologous to mitochondrial solute carriers. EMBO J. 14: 2307-2316. 7774589
Aquila, H., T.A. Link, and M. Klingenberg. (1987). Solute carriers involved in energy transfer of mitochondria form a homologous protein family. FEBS Lett. 212: 1-9. 3026849
Arco, A.D. and J. Satrústegui. (2005). New mitochondrial carriers: an overview. Cell Mol Life Sci 62: 2204-2227. 16132231
Azzu V. and Brand MD. (2010). The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci. 35(5):298-307. 20006514
Babot, M., C. Blancard, L. Pelosi, G.J. Lauquin, and V. Trézéguet. (2012). The transmembrane prolines of the mitochondrial ADP/ATP carrier are involved in nucleotide binding and transport and its biogenesis. J. Biol. Chem. 287: 10368-10378. 22334686
Bafunno, V., T.A. Giancaspero, C. Brizio, D. Bufano, S. Passarella, E. Boles, ad M. Barile. (2004). Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria. Involvement of the Flx1p carrier in FAD export. J. Biol. Chem. 279: 95-102. 14555654
Bamber, L., M. Harding, M. Monné, D.J. Slotboom, and E.R. Kunji. (2007). The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes. Proc. Natl. Acad. Sci. USA 104: 10830-10834. 17566106
Bamber, L., M. Harding, P.J. Butler, and E.R. Kunji. (2006). Yeast mitochondrial ADP/ATP carriers are monomeric in detergents. Proc. Natl. Acad. Sci. USA 103: 16224-16229. 17056710
Bedhomme, M., M. Hoffmann, E.A. McCarthy, B. Gambonnet, R.G. Moran, F. Rebeille, and S. Ravanel. (2005). Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts. J. Biol. Chem. 280: 34823-24831. 16055441
Berardi, M.J., W.M. Shih, S.C. Harrison, and J.J. Chou. (2011). Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476: 109-113. 21785437
Bernhardt, K., S. Wilkinson, A.P. Weber, and N. Linka. (2012). A peroxisomal carrier delivers NAD⁺ and contributes to optimal fatty acid degradation during storage oil mobilization. Plant J. 69: 1-13. 21895810
Bouillaud, F., E. Couplan, C. Pecqueur, and D. Ricquier. (2001). Homologues of the uncoupling protein from brown adipose tissue (UCP1):UCP2, UCP3, BMCP1 and UCP4. Biochim. Biophys. Acta 1504: 107-119. 11239488
Bouvier, F., N. Linka, J.C. Isner, J. Mutterer, A.P. Weber, and B. Camara. (2006). Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. Plant Cell. 18: 3088-3105. 17098813
Cappello, A.R., D.V. Miniero, R. Curcio, A. Ludovico, L. Daddabbo, I. Stipani, A.J. Robinson, E.R. Kunji, and F. Palmieri. (2007). Functional and structural role of amino acid residues in the odd-numbered transmembrane α-helices of the bovine mitochondrial oxoglutarate carrier. J. Mol. Biol. 369: 400-412. 17442340
Cappello, A.R., R. Curcio, D. Valeria Miniero, I. Stipani, A.J. Robinson, E.R. Kunji, and F. Palmieri. (2006). Functional and structural role of amino acid residues in the even-numbered transmembrane α-helices of the bovine mitochondrial oxoglutarate carrier. J. Mol. Biol. 363: 51-62. 16962611
Carrisi, C., M. Madeo, P. Morciano, V. Dolce, G. Cenci, A.R. Cappello, G. Mazzeo, D. Iacopetta, and L. Capobianco. (2008). Identification of the Drosophila melanogaster mitochondrial citrate carrier: bacterial expression, reconstitution, functional characterization and developmental distribution. J Biochem 144: 389-392. 18515854
Casimir, M., F.M. Lasorsa, B. Rubi, D. Caille, F. Palmieri, P. Meda, and P. Maechler. (2009). Mitochondrial glutamate carrier GC1 as a newly identified player in the control of glucose-stimulated insulin secretion. J. Biol. Chem. 284: 25004-25014. 19584051
Castegna, A., P. Scarcia, G. Agrimi, L. Palmieri, H. Rottensteiner, I. Spera, L. Germinario, and F. Palmieri. (2010). Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae. J. Biol. Chem. 285: 17359-17370. 20371607
Cavero, S., A. Vozza, A. del Arco, L. Palmieri, A. Villa, E. Blanco, M.J. Runswick, J.E. Walker, S. Cerdán, F. Palmieri, and J. Satrústegui. (2003). Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae. Mol. Microbiol. 50: 1257-1269. 14622413
Chan, K.W., D.J. Slotboom, S. Cox, T.M. Embley, O. Fabre, M. van der Giezen, M. Harding, D.S. Horner, E.R. Kunji, G. León-Avila, and J. Tovar. (2005). A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr. Biol. 15: 737-742. 15854906
De Marchi, U., C. Castelbou, and N. Demaurex. (2011). Uncoupling protein 3 (UCP3) modulates the activity of Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) by decreasing mitochondrial ATP production. J. Biol. Chem. 286: 32533-32541. 21775425
del Arco, A. and J. Satrústegui. (1998). Molecular cloning of Aralar, a new member of the mitochondrial carrier subfamily that binds calcium and is present in human muscle and brain. J. Biol. Chem. 273: 23327-23334. 9722566
Dierks, T., A. Salentin, and R. Krämer. (1990b). Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents: evidence for a preformed channel as a structural requirement of carrier-mediated transport. Biochim. Biophys. Acta 1028: 281-288. 1699601
Dierks, T., A. Salentin, C. Heberger, and R. Krämer. (1990a). The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagents. Biochim. Biophys. Acta 1028: 268-280. 1977471
Dolce, V., G. Fiermonte, M.J. Runswick, F. Palmieri, and J.E. Walker. (2001). The human mitochondrial deoxynucelotide carrier and its role in the toxicity of nucleoside antivirals. Proc. Natl. Acad. Sci. USA 98: 2284-2288. 11226231
Dolezal, P., M. Aili, J. Tong, J.H. Jiang, C.M. Marobbio, S.F. Lee, R. Schuelein, S. Belluzzo, E. Binova, A. Mousnier, G. Frankel, G. Giannuzzi, F. Palmieri, K. Gabriel, T. Naderer, E.L. Hartland, and T. Lithgow. (2012). Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection. PLoS Pathog 8: e1002459. 22241989
Echtay, K.S., E. Winkler, and M. Klingenberg. (2000). Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408: 609-613. 11117751
Echtay, K.S., M. Bienengraeber, E. Winkler, and M. Klingenberg. (1998). In the uncoupling protein (UCP-1) His-214 is involved in the regulation of purine nucleoside triphosphate but not diphosphate binding. J. Biol. Chem. 273: 24368-24374. 9733725
Echtay, K.S., T.C. Esteves, J.L. Pakay, M.B. Jekabsons, A.J. Lambert, M. Portero-Otín, R. Pamplona, A. J. Vidal-Puig, S. Wang, S.J. Roebuck, and M.D. Brand. (2003). A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 22: 4103-4110. 12912909
Engstová, H., M. Zácková, M. Růzicka, A. Meinhardt, J. Hanus, R. Krämer, and P. Jezek. (2001). Natural and azido fatty acids inhibit phosphate transport and activate fatty acid anion uniport mediated by the mitochondrial phosphate carrier. J. Biol. Chem. 276: 4683-4691. 11085992
Fedorenko, A., P.V. Lishko, and Y. Kirichok. (2012). Mechanism of Fatty-Acid-Dependent UCP1 Uncoupling in Brown Fat Mitochondria. Cell 151: 400-413. 23063128
Fernández, M., E. Fernández, and R. Rodicio. (1994). ACR1, a gene encoding a protein related to mitochondrial carriers, is essential for acetyl-CoA synthetase activity in Saccharomyces cerevisiae. Mol. Gen. Genet. 242: 727-735. 7908717
Fiermonte G., Paradies E., Todisco S., Marobbio CM. and Palmieri F. (2009). A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3',5'-diphosphate in human mitochondria. J Biol Chem. 284(27):18152-9. 19429682
Fiermonte, G., F. De Leonardis, S. Todisco, L. Palmieri, F.M. Lasorsa, and F. Palmieri. (2004). Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 279: 30722-30730. 15123600
Fiermonte, G., L. Palmieri, V. Dolce, F.M. Lasorsa, F. Palmieri, M.J. Runswick, and J.E. Walker. (1998). The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans. J. Biol. Chem. 273: 24754-24759. 9733776
Fiermonte, G., M.J. Runswick, J.E. Walker, and F. Palmieri. (1992). Sequence and pattern of expression of a bovine homologue of a human mitochondrial transport protein associated with Grave’s disease. DNA Seq. 3: 71-78. 1457817
Fiermonte, G., V. Dolce, L. Palmieri, M. Ventura, M.J. Runswick, F. Palmieri, and J.E. Walker. (2001). Identification of the human mitochondrial oxodicarboylate carrier. J. Biol. Chem. 276: 8225-8230. 11083877
Foury, F. and T. Roganti. (2002). Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J. Biol. Chem. 277: 24475-24483. 12006577
Froschauer, E.M., R.J. Schweyen, and G. Wiesenberger. (2009). The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. Biochim. Biophys. Acta. 1788: 1044-1050. 19285482
Garlid, K.D., M. Jaburek, P. Jezek, and M. Varecha. (2000). How do uncoupling proteins uncouple? Biochim. Biophys. Acta 1459: 383-389. 11004454
Gigolashvili, T., M. Geier, N. Ashykhmina, H. Frerigmann, S. Wulfert, S. Krueger, S.G. Mugford, S. Kopriva, I. Haferkamp, and U.I. Flügge. (2012). The Arabidopsis Thylakoid ADP/ATP Carrier TAAC Has an Additional Role in Supplying Plastidic Phosphoadenosine 5'-Phosphosulfate to the Cytosol. Plant Cell. [Epub: Ahead of Print] 23085732
Grinberg, M., M. Schwarz, Y. Zaltsman, T. Eini, H. Niv, S. Pietrokovski, and A. Gross. (2005). Mitochondrial carrier homolog 2 is a target of tBID in cells signaled to die by tumor necrosis factor alpha. Mol. Cell. Biol. 25(11):4579-4590. 15899861
Gross, A. (2005). Mitochondrial carrier homolog 2: a clue to cracking the BCL-2 family riddle? J. Bioenerg. Biomembr. 37(3):113-119.
Guillen, C., A. Bartolome, R. Vila-Bedmar, A. García-Aguilar, A. Gomez-Hernandez, and M. Benito. (2013). Concerted expression of the thermogenic and bioenergetic mitochondrial protein machinery in brown adipose tissue. J. Cell. Biochem. 114: 2306-2313. 23606415
Gutiérrez-Aguilar, M. and C.P. Baines. (2013). Physiological and pathological roles of mitochondrial SLC25 carriers. Biochem. J. 454: 371-386. 23988125
Haferkamp I., J.H. Hackstein, F.G. Voncken, G. Schmit, J. Tjaden. (2002). Functional integration of mitochondrial and hydrogenosomal ADP/ATP carriers in the Escherichia coli membrane reveals different biochemical characteristics for plants, mammals and anaerobic chytrids. Eur. J. Biochem. 269: 3172-3181. 12084057
Haferkamp, I. (2007). The diverse members of the mitochondrial carrier family in plants. FEBS Lett. 581: 2375-2379. 17321523
Haferkamp, I. and S. Schmitz-Esser. (2012). The plant mitochondrial carrier family: functional and evolutionary aspects. Front Plant Sci 3: 2. 22639632
Haferkamp, I., A.R. Fernie, and H.E. Neuhaus. (2011). Adenine nucleotide transport in plants: much more than a mitochondrial issue. Trends Plant Sci. 16: 507-515. 21622019
Haguenauer, A., S. Raimbault, S. Masscheleyn, M. del M. Gonzalez-Barroso, F. Criscuolo, J. Plamondon, J. Mirouxx, D. Ricquier, D. Richard, F. Bouillaud, and C. Pecqueur. (2005). A new renal mitochondrial carrier, KMCP1, is up-regulated during tubular cell regeneration and induction of antioxidant enzymes. J. Biol. Chem. 280: 22036-22043. 15809292
Hamel, P., Y. Saint-Georges, B. de Pinto, N. Lachacinski, N. Altamura, and G. Dujardin. (2004). Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana. Mol. Microbiol. 51: 307-317. 14756774
Hoang, T., M.D. Smith, and M. Jelokhani-Niaraki. (2012). Toward understanding the mechanism of ion transport activity of neuronal uncoupling proteins UCP2, UCP4, and UCP5. Biochemistry 51: 4004-4014. 22524567
Hoyos, M.E., L. Palmieri, T. Wertin, R. Arrigoni, J.C. Polacco, and F. Palmieri. (2003). Identification of a mitochondrial transporter for basic amino acids in Arabidopsis thaliana by functional reconstitution into liposomes and complementation in yeast. Plant J. 33: 1027-1035. 12631327
Iacopetta D., Carrisi C., De Filippis G., Calcagnile VM., Cappello AR., Chimento A., Curcio R., Santoro A., Vozza A., Dolce V., Palmieri F. and Capobianco L. (2010). The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from Drosophila melanogaster. FEBS J. 277(5):1172-81. 20121944
Indiveri, C., V. Iacobazzi, A. Tonazzi, N. Giangregorio, V. Infantino, P. Convertini, L. Console, and F. Palmieri. (2011). The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology. Mol Aspects Med 32: 223-233. 22020112
Indiveri, C., V. Iacobazzi, N. Giangregorio, and F. Palmieri. (1997). The mitochondria carnitine carrier protein: cDNA cloning, primary structure and comparison with other mitochondrial transport proteins. Biochem. J. 321: 713-719. 9032458
Jaburek, M., M. Varecha, R. Gimeno, M. Dembski, P. Jezek, M. Zhang, P. Burn, L. Tartaglia, and K. Garlid. (1999). Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J. Biol. Chem. 274: 26003-26007. 10473545
Kabe, Y., M. Ohmori, K. Shinouchi, Y. Tsuboi, S. Hirao, M. Azuma, H. Watanabe, I. Okura, and H. Handa. (2006). Porphyrin accumulation in mitochondria is mediated by 2-oxoglutarate carrier. J. Biol. Chem. 281: 31729-31735. 16920706
Kaplan, R.S. (2001). Structure and function of mitochondrial anion transport proteins. J. Membrane Biol. 179: 165-183. 11246418
Kirchberger, S., M. Leroch, M.A. Huynen, M. Wahl, H.E. Neuhaus, and J. Tjaden. (2007). Molecular and Biochemical Analysis of the Plastidic ADP-glucose Transporter (ZmBT1) from Zea mays. J. Biol. Chem. 282(31):22481-22491. 17562699
Klingenberg, M. (2008). The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta. 1778: 1978-2021. 18510943
Kuan, J. and M.H. Saier, Jr. (1993). The mitochondrial carrier family of transport proteins: structural, functional and evolutionary relationships. Crit. Rev. Biochem. Mol. Biol. 28: 209-233. 8325039
Kucejova, B., L. Li, X. Wang, S. Giannattasio, and X.J. Chen. (2008). Pleiotropic effects of the yeast Sal1 and Aac2 carriers on mitochondrial function via an activity distinct from adenine nucleotide transport. Mol. Genet. Genomics 280: 25-39. 18431598
Kunji, E.R. and A.J. Robinson. (2006). The conserved substrate binding site of mitochondrial carriers. Biochim. Biophys. Acta 1757: 1237-1248. 16759636
Kunji, E.R. and A.J. Robinson. (2010). Coupling of proton and substrate translocation in the transport cycle of mitochondrial carriers. Curr. Opin. Struct. Biol. 20: 440-447. 20598524
Leroch, M., H.E. Neuhaus, S. Kirchberger, S. Zimmermann, M. Melzer, J. Gerhold, and J. Tjaden. (2008). Identification of a novel adenine nucleotide transporter in the endoplasmic reticulum of Arabidopsis. Plant Cell 20: 438-451. 18296626
Leroch, M., S. Kirchberger, I. Haferkamp, M. Wahl, H.E. Neuhaus, and J. Tjaden. (2005). Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum. J. Biol. Chem. 280(18):17992-18000. 15737999
Leung, A.W. and A.P. Halestrap. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim. Biophys. Acta. 1777: 946-952. 18407825
Lindhurst, M.J., G. Fiermonte, S. Song, E. Struys, F. De Leonardis, P.L. Schwartzberg, A. Chen, A. Castegna, N. Verhoeven, C.K. Mathews, F. Palmieri, and L.G. Biesecker. (2006). Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proc. Natl. Acad. Sci. USA 103: 15927-15932. 17035501
Linka, N. and C. Esser. (2012). Transport proteins regulate the flux of metabolites and cofactors across the membrane of plant peroxisomes. Front Plant Sci 3: 3. 22645564
Liu, Q. and J.C. Dunlap. (1996). Isolation and analysis of the arg-13 gene of Neurospora crassa. Genetics 143: 1163-1174. 8807290
Ma, C., S. Remani, J. Sun, R. Kotaria, J.A. Mayor, D.E. Walters, and R.S. Kaplan. (2007). Identification of the substrate binding sites within the yeast mitochondrial citrate transport protein. J. Biol. Chem. 282: 17210-17220. 17400551
Madeo, M., C. Carrisi, D. Iacopetta, L. Capobianco, A.R. Cappello, C. Bucci, F. Palmieri, G. Mazzeo, A. Montalto, and V. Dolce. (2009). Abundant expression and purification of biologically active mitochondrial citrate carrier in baculovirus-infected insect cells. J. Bioenerg. Biomembr. 41: 289-297. 19629661
Mano, S., C. Nakamori, Y. Fukao, M. Araki, A. Matsuda, M. Kondo, and M. Nishimura. (2011). A defect of peroxisomal membrane protein 38 causes enlargement of peroxisomes. Plant Cell Physiol. 52: 2157-2172. 22034551
Marobbio C.M., A. Vozza, M. Harding, F. Bisaccia, F. Palmieri, J.E. Walker. (2002). Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. EMBO J. 21: 5653-5661. 12411483
Marobbio C.M., M.A. Di Noia, F. Palmieri. (2006). Identification of a mitochondrial transporter for pyrimidine nucleotides in Saccharomyces cerevisiae: bacterial expression, reconstitution and functional characterization. Biochem J. 393: 441-446 16194150
Marobbio, C.M.T., G. Agrimi, F.M. Lasorsa, and F. Palmieri. (2003). Identification and functional reconstitution of yeast mitochondrial carrier for S-adenosylmethionine. EMBO J. 22: 5975-5982. 14609944
Mayor J.A., D. Kakhniashvili, D.A. Gremse, C. Campbell, R. Krämer, A. Schroers, R.S. Kaplan. (1997). Bacterial overexpression of putative yeast mitochondrial transport proteins. J. Bioenerg. Biomembr. 29: 541-547. 9559855
Monné, M. and F. Palmieri. (2014). Antiporters of the mitochondrial carrier family. Curr Top Membr 73: 289-320. 24745987
Monné, M., A.J. Robinson, C. Boes, M.E. Harbour, I.M. Fearnley, and E.R. Kunji. (2007). The mimivirus genome encodes a mitochondrial carrier that transports dATP and dTTP. J. Virol. 81: 3181-3186. 17229695
Monné, M., F. Palmieri, and E.R. Kunji. (2013). The substrate specificity of mitochondrial carriers: mutagenesis revisited. Mol. Membr. Biol. 30: 149-159. 23121155
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Mühlenhoff, U., J.A. Stadler, N. Richhardt, A. Seubert, T. Eickhorst, R.J. Schweyen, R. Lill, and G. Wiesenberger. (2003). A specific role of the yeast mitochondrial carriers Mrs3/4p in mitochondrial iron acquisition under iron-limiting conditions. J. Biol. Chem. 278: 40612-40620. 12902335
Norheim, K.B., S. Le Hellard, G. Nordmark, E. Harboe, L. Gøransson, J.G. Brun, M. Wahren-Herlenius, R. Jonsson, and R. Omdal. (2014). A possible genetic association with chronic fatigue in primary Sjögren's syndrome: a candidate gene study. Rheumatol Int 34: 191-197. 23999819
Nozawa, A., R. Fujimoto, H. Matsuoka, T. Tsuboi, and Y. Tozawa. (2011). Cell-free synthesis, reconstitution, and characterization of a mitochondrial dicarboxylate-tricarboxylate carrier of Plasmodium falciparum. Biochem. Biophys. Res. Commun. 414: 612-617. 21986531
Palmieri L., G. Agrimi, M.J. Runswick, I.M. Fearnley, F. Palmieri, J.E. Walker. (2001). Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate. J. Biol. Chem. 276: 1916-1922. 11013234
Palmieri, F. (2004). The mitochondrial transporter family (SLC25): physiological and pathological implications. Eur. J. Physiol. 447: 689-709. 14598172
Palmieri, F. (2012). The mitochondrial transporter family SLC25: Identification, properties and physiopathology. Mol Aspects Med. [Epub: Ahead of Print] 23266187
Palmieri, F. and C.L. Pierri. (2010). Mitochondrial metabolite transport. Essays Biochem 47: 37-52. 20533899
Palmieri, F. Diseases caused by defects of mitochondrial carriers: a review. Biochim. Biophys. Acta. 1777: 564-578. 18406340
Palmieri, F., B. Rieder, A. Ventrella, E. Blanco, P.T. Do, A. Nunes-Nesi, A.U. Trauth, G. Fiermonte, J. Tjaden, G. Agrimi, S. Kirchberger, E. Paradies, A.R. Fernie, and H.E. Neuhaus. (2009). Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J. Biol. Chem. 284: 31249-31259. 19745225
Palmieri, L., A. Santoro, F. Carrari, E. Blanco, A. Nunes-Nesi, R. Arrigoni, F. Genchi, A.R. Fernie, and F. Palmieri. (2008). Identification and characterization of ADNT1, a novel mitochondrial adenine nucleotide transporter from arabidopsis. Plant Physiol. 148: 1797-1808. 18923018
Palmieri, L., A. Vozza, A. Hönlinger, K. Dietmeier, A. Palmisano, V. Zara, and F. Palmieri. (1999). The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source. Mol. Microbiol. 31: 569-577. 10027973
Palmieri, L., A. Vozza, G. Agrimi, V. De Marco, M. Runswick, F. Palmieri, and J. Walkers. (1999). Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J. Biol. Chem. 274: 22184-22190. 10428783
Palmieri, L., B. Pardo, F.M. Lasorsa, A. del Arco, K. Kobayashi, M. Iijima, M.J. Runswick, J.E. Walker, T. Saheki, J. Satrustegui, and F. Palmieri. (2001). Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J. 18: 5060-5069. 11566871
Palmieri, L., F.M. Lasorsa, A. De Palma, F. Palmieri, M.J. Runswick, and J.E. Walker. (1997). Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Lett. 417: 114-118. 9395087
Palmieri, L., H. Rottensteiner, W. Girzalsky, P. Scarcia, F. Palmieri, and R. Erdmann. (2001). Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J. 18: 5049-5059. 11566870
Palmieri, L., N. Picault, R. Arrigoni, E. Besin, F. Palmieri, and M. Hodges. (2008). Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. J. Biochem. 410: 621-629. 18039180
Palmieri, L., V. De Marco, V. Iacobazzi, F. Palmieri, M.J. Runswick, and J.E. Walker. (1997). Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis. FEBS Lett. 410: 447-451. 9237680
Paradkar, P.N., K.B. Zumbrennen, B.H. Paw, D.M. Ward, and J. Kaplan. (2009). Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol. Cell Biol. 29: 1007-1016. 19075006
Pebay-Peyroula, E., C. Dahout-Gonzalez, R. Kahn, V. Trézéguet, G.J.-M. Lauquin, and G. Brandolin. (2003). Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426: 39-44. 14603310
Picault, N., L. Palmieri, I. Pisano, M. Hodges, and F. Palmieri. (2002). Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 277: 24204-24211. 11978797
Poduri, A., E.L. Heinzen, V. Chitsazzadeh, F.M. Lasorsa, P.C. Elhosary, C.M. LaCoursiere, E. Martin, C.J. Yuskaitis, R.S. Hill, K.D. Atabay, B. Barry, J.N. Partlow, F.A. Bashiri, R.M. Zeidan, S.A. Elmalik, M.M. Kabiraj, S. Kothare, T. Stödberg, A. McTague, M.A. Kurian, I.E. Scheffer, A.J. Barkovich, F. Palmieri, M.A. Salih, and C.A. Walsh. (2013). SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann Neurol 74: 873-882. 24596948
Porcelli, V., G. Fiermonte, A. Longo, and F. Palmieri. (2014). The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J. Biol. Chem. 289: 13374-13384. 24652292
Robinson, A., C. Overy, and E.R.S. Kunji. (2008). The mechanism of transport by mitochondrial carriers based on analysis of symmetry. PNAS 105: 17766-17771.
Robinson, A.J. and E.R. Kunji. (2006). Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc. Natl. Acad. Sci. USA 103: 2617-2622. 16469842
Robinson, A.J., E.R. Kunji, and A. Gross. (2012). Mitochondrial carrier homolog 2 (MTCH2): the recruitment and evolution of a mitochondrial carrier protein to a critical player in apoptosis. Exp Cell Res 318: 1316-1323. 22326460
Rosenthal, E.A., J. Ranchalis, D.R. Crosslin, A. Burt, J.D. Brunzell, A.G. Motulsky, D.A. Nickerson, , E.M. Wijsman, and G.P. Jarvik. (2013). Joint linkage and association analysis with exome sequence data implicates SLC25A40 in hypertriglyceridemia. Am J Hum Genet 93: 1035-1045. 24268658
Ruprecht, J.J., A.M. Hellawell, M. Harding, P.G. Crichton, A.J. McCoy, and E.R. Kunji. (2014). Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc. Natl. Acad. Sci. USA 111: E426-434. 24474793
Sanchis, D., C. Fleury, N. Chomiki, M. Goubern, Q. Huang, M. Neverova, F. Gregoire, J. Easlick, S. Raimbault, C. Levi-Meyrueis, B. Miroux, S. Collins, M. Seldin, D. Richard, C. Warden, F. Bouillaud, and D. Ricquier. (1998). BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J. Biol. Chem. 273: 34611-34615. 9852133
Saraste, M. and J.E. Walker. (1982). Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 144: 250-254. 6288471
Schroers, A., A. Burkovski, H. Wohlrab, and R. Krämer. (1998). The phosphate carrier from yeast mitochondria: dimerization is a prerequisite for function. J. Biol. Chem. 273: 14269-14276. 9603933
Sekoguchi, E., N. Sato, A. Yasui, S. Fukada, Y. Nimura, H. Aburatani, K. Ikeda, and A. Matsuura. (2003). A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J. Biol. Chem. 278: 38796-38802. 12882971
Shaw, G.C., J.J. Cope, L. Li, K. Corson, C. Hersey, G.E. Ackermann, B. Gwynn, A.J. Lambert, R.A. Wingert, D. Traver, N.S. Trede, B.A. Barut, Y. Zhou, E. Minet, A. Donovan, A. Brownlie, R. Balzan, M.J. Weiss, L.L. Peters, J. Kaplan, L.I. Zon, and B.H. Paw. (2006). Mitoferrin is essential for erythroid iron assimilation. Nature 440: 96-100. 16511496
Sullivan, T.D., L.I. Strelow, C.A. Illingworth, R.L. Phillips, and O.E. Nelson, Jr. (1991). Analysis of maize brittle-1 alleles and a defective suppressor-mutator-induced mutable allele. Plant Cell 3: 1337-1348. 1668652
Sweetlove L.J., A. Lytovchenko, M. Morgan, A. Nunes-Nesi, N.L. Taylor, C.J. Baxter, I. Eickmeier, A.R. Fernie. (2006). Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 103: 19587-19592. 17148605
Syfrig, J., K. Mann, and M. Paulsson. (1991). An abundant chick gizzard integrin is the avian alpha 1 beta 1 integrin heterodimer and functions as a divalent cation-dependent collagen IV receptor. Exp Cell Res 194: 165-173. 1851093
Thuswaldner, S., J.O. Lagerstedt, M. Rojas-Stütz, K. Bouhidel, C. Der, N. Leborgne-Castel, A. Mishra, F. Marty, B. Schoefs, I. Adamska, B.L. Persson, and C. Spetea. (2007). Identification, expression, and functional analyses of a thylakoid ATP/ADP carrier from Arabidopsis. J. Biol. Chem. 282: 8848-8859. 17261580
Titus, S.A. and R.G. Moran. (2001). Retrovirally mediated complementation of the glyB phenotype. Cloning of a human gene encoding the carrier for entry of folates into mitochondria. J. Biol. Chem. 275: 36811-36817. 10978331
Tjaden, J., I. Haferkamp, B. Boxma, A.G.M. Tielens, M. Huynen, and J.H.P. Hackstein. (2004). A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol. Microbiol. 51: 1439-1446. 14982636
Todisco, S., G. Agrimi, A. Castegna, and F. Palmieri. (2006). Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J. Biol. Chem. 281: 1524-1531. 16291748
Toka, I., S. Planchais, C. Cabassa, A.M. Justin, D. De Vos, L. Richard, A. Savouré, and P. Carol. (2010). Mutations in the hyperosmotic stress-responsive mitochondrial BASIC AMINO ACID CARRIER2 enhance proline accumulation in Arabidopsis. Plant Physiol. 152: 1851-1862. 20172963
Tonazzi A. and Indiveri C. (2011). Effects of heavy metal cations on the mitochondrial ornithine/citrulline transporter reconstituted in liposomes. Biometals. 24(6):1205-15. 21769608
Traba, J., E.M. Froschauer, G. Wiesenberger, J. Satrústegui, and A. Del Arco. (2008). Yeast mitochondria import ATP through the calcium-dependent ATP-Mg/Pi carrier Sal1p, and are ATP consumers during aerobic growth in glucose. Mol. Microbiol. 69: 570-585. 18485069
Tzagoloff, A., J. Jang, D.M. Glerum, and M. Wu. (1996). FLX1 codes for a carrier protein involved in maintaining a proper balance of flavin nucleotides in yeast mitochondria. J. Biol. Chem. 271: 7392-7397. 8631763
Valente, C., P. Pasqualim, T. Jacomasso, J.B. Maurer, E.M. Souza, G.R. Martinez, M.E. Rocha, E.G. Carnieri, and S.M. Cadena. (2012). The involvement of PUMP from mitochondria of Araucaria angustifolia embryogenic cells in response to cold stress. Plant Sci 197: 84-91. 23116675
van der Giezen, M., D.J. Slotboom, D.S. Horner, P.L. Dyal, M. Harding, G.-P. Xue, T.M. Embley, and E.R.S. Kunji. (2002). Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 21: 572-579. 11847105
Visser, W.F., C.W. van Roermund, H.R. Waterham, and R.J. Wanders. (2002). Identification of human PMP34 as a peroxisomal ATP transporter. Biochem. Biophys. Res. Commun. 299: 494-497. 12445829
Vozza, A., E. Blanco, L. Palmieri, and F. Palmieri. (2004). Identification of the mitochondrial GTP/GDP transporter in Saccharomyces cerevisiae. J. Biol. Chem. 279: 20850-20857. 14998997
Waldeck-Weiermair, M., C. Jean-Quartier, R. Rost, M.J. Khan, N. Vishnu, A.I. Bondarenko, H. Imamura, R. Malli, and W.F. Graier. (2011). Leucine zipper EF hand-containing transmembrane protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. J. Biol. Chem. 286: 28444-28455. 21613221
Walker, J.E. and M.J. Runswick. (1993). The mitochondrial transport protein superfamily. J. Bioenerg. Biomemb. 25: 435-446. 8132484
Williams, B.A., I. Haferkamp, and P.J. Keeling. (2008). An ADP/ATP-specific mitochondrial carrier protein in the microsporidian Antonospora locustae. J. Mol. Biol. 375(5):1249-1257. 18078956
Xu, X., Y. Shi, X. Wu, P. Gambetti, D. Sui, and M.Z. Cui. (1999). Identification of a novel PSD-95/Dlg/ZO-1 (PDZ)-like protein interacting with the C terminus of presenilin-1. J. Biol. Chem. 274: 32543-32546. 10551805
Xu, X., Y.C. Shi, W. Gao, G. Mao, G. Zhao, S. Agrawal, G.M. Chisolm, D. Sui, and M.Z. Cui. (2002). The novel presenilin-1-associated protein is a proapoptotic mitochondrial protein. J. Biol. Chem. 277: 48913-48922. 12377771
Xu, Y., D.A. Kakhniashvili, D.A. Gremse, D.O. Wood, J.A. Mayor, D.E. Walters, and R.S. Kaplan. (2000). The yeast mitochondrial citrate transport protein. J. Biol. Chem. 275: 7117-7124. 10702279
Zara, V., A. Ferramosca, L. Capobianco, K.M. Baltz, O. Randel, J. Rassow, F. Palmieri, and P. Papatheodorou. (2007). Biogenesis of yeast dicarboxylate carrier: the carrier signature facilitates translocation across the mitochondrial outer membrane. J. Cell. Sci. 120: 4099-4106. 18032784