TCDB is operated by the Saier Lab Bioinformatics Group

4.A.1 The PTS Glucose-Glucoside (Glc) Family

The Glc family includes porters specific for glucose, glucosamine, N-acetylglucosamine and a large variety of α- and β-glucosides. However, not all β-glucoside PTS porters are in this class, as the PTS porter first described as the cellobiose (Cel) β-glucoside porter is the diacetylchitobiose porter in the Lac family (TC #4.A.3). The IIA, IIB and IIC domains of all of the group translocators listed below are demonstrably homologous. These porters (the IIC domains) show limited sequence similarity with and are homologous to members of the Fru family (TC #4.A.2) and with (but less so) with members of the Lac family (TC #4.A.3). The IIC domains of the glucose (4.A.1.1) and glucoside (4.A.1.2) subfamilies are nearly as distant from each other as they are from the Fru, Mtl and Lac families. As is true of other members of the PTS-GFL superfamily, the IIC domains of these permeases probably have a uniform 10 TMS topology (McCoy et al. 2016; Vastermark and Saier 2016).

Several of the PTS porters in the Glc family lack their own IIA domains and instead use the glucose IIA protein (IIAglc or Crr). Most of these porters have the B and C domains linked together in a single polypeptide chain. A cysteyl residue in the IIB domain is phosphorylated by direct phosphoryl transfer from IIAglc(his~P) or one of its homologues. Those porters which lack a IIA domain include the maltose (Mal), arbutin-salicin-cellobiose (ASC), trehalose (Tre), putative glucoside (Glv) and sucrose (Scr) porters of E. coli. Most, but not all Scr porters of other bacteria also lack a IIA domain.

BglF consists of a transmembrane domain, which in addition to TMSs, contains a large cytoplasmic loop. According to Yagur-Kroll et al., 2009, this loop, connecting TMSI to TMSII, contains regions that alternate between facing-in and facing-out states and creates the sugar translocation channel. Yagur-Kroll et al., 2009 demonstrated spatial proximity between positions at the center of the big loop and the phosphorylation site, suggesting that the two regions come together to execute sugar phosphotransfer.

The three-dimensional structures of the IIA and IIB domains of the E. coli glucose porter have been elucidated. IIAglc has a complex β-sandwich structure while IIBglc is a split αβ-sandwich with a topology unrelated to the split αβ-sandwich structure of HPr.  Some bacteria have many PTS transport systems belonging to different families.  For example, the solventogenic Clostridium acetobutylicum ATCC 824 has 13 altogether with 6 in the Glc family, 2 in the Fru family, 2 in the Lac family, 1 in the Gat family and 2 in the Man family.  However, Clostridium beijerinckii has 43 phosphotransferases (McCoy et al. 2016; Vastermark and Saier 2016).

Several of the PTS porters in the Glc family lack their own IIA domains and instead use the glucose IIA protein (IIAglc or Crr). Most of these porters have the B and C domains linked together in a single polypeptide chain. A cysteyl residue in the IIB domain is phosphorylated by direct phosphoryl transfer from IIAglc(his~P) or one of its homologues. Those porters which lack a IIA domain include the maltose (Mal), arbutin-salicin-cellobiose (ASC), trehalose (Tre), putative glucoside (Glv) and sucrose (Scr) porters of E. coli. Most, but not all Scr porters of other bacteria also lack a IIA domain.

BglF consists of a transmembrane domain, which in addition to TMSs, contains a large cytoplasmic loop. According to Yagur-Kroll et al., 2009, this loop, connecting TMSI to TMSII, contains regions that alternate between facing-in and facing-out states and creates the sugar translocation channel. Yagur-Kroll et al., 2009 demonstrated spatial proximity between positions at the center of the big loop and the phosphorylation site, suggesting that the two regions come together to execute sugar phosphotransfer.

The three-dimensional structures of the IIA and IIB domains of the E. coli glucose porter have been elucidated. IIAglc has a complex β-sandwich structure while IIBglc is a split αβ-sandwich with a topology unrelated to the split αβ-sandwich structure of HPr.  Some bacteria have many PTS transport systems belonging to different families.  For example, the solventogenic Clostridium acetobutylicum ATCC 824 has 13 altogether with 6 in the Glc family, 2 in the Fru family, 2 in the Lac family, 1 in the Gat family and 2 in the Man family.  However, Clostridium beijerinckii has 43 phosphotransferases (Mitchell 2015).

 

This family belongs to the: PTS-GFL Superfamily.

References associated with 4.A.1 family:

Carmona, S.B., F. Moreno, F. Bolívar, G. Gosset, and A. Escalante. (2015). Inactivation of the PTS as a Strategy to Engineer the Production of Aromatic Metabolites in Escherichia coli. J. Mol. Microbiol. Biotechnol. 25: 195-208. 26159079
Chen, Y., J. Reizer, M.H. Saier, Jr, W.J. Fairbrother, and P.E. Wright. (1993). Mapping of the binding interfaces of the proteins of the bacterial phosphotransferase system, HPr and IIAglc. Biochemistry 32: 32-37. 8418852
Christiansen, I. and W. Hengstenberg. (1999). Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system--two highly similar glucose permeases in Staphylococcus carnosus with different glucoside specificity: protein engineering in vivo? Microbiology 145(Pt10): 2881-2889. 10537210
Cote, C.K. and A.L. Honeyman. (2003). The LicT protein acts as both a positive and a negative regulator of loci within the bgl regulon of Streptooccus mutans. Microbiology 149: 1333-1340. 12724394
Cote, C.K., D. Cvitkovitch, A.S. Bleiweis, and A.L. Honeyman. (2000). A novel β-glucoside-specific PTS locus from Streptococcus mutans that is not inhibited by glucose. Microbiology 146: 1555-1563. 10878120
Dahl, U., T. Jaeger, B.T. Nguyen, J.M. Sattler, and C. Mayer. (2004). Identification of a phosphotransferase system of Escherichia coli required for growth on N-acetylmuramic acid. J. Bacteriol. 186: 2385-2392. 15060041
Decker, K., F. Gerhardt, and W. Boos. (1999). The role of the trehalose system in regulating the maltose regulon of Escherichia coli. Mol. Microbiol. 32: 777-788. 10361281
Desai, S.K., K. Nandimath, and S. Mahadevan. (2010). Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon. Arch. Microbiol. 192: 821-833. 20697693
Eberstadt, M., S.G. Grdadolnik, G. Gemmecker, H. Kessler, A. Buhr, and B. Erni. (1996). Solution structure of the IIB domain of the glucose transporter of Escherichia coli. Biochemistry 35: 11286-11292. 8784182
Ells, T.C. and L. Truelstrup Hansen. (2011). Increased thermal and osmotic stress resistance in Listeria monocytogenes 568 grown in the presence of trehalose due to inactivation of the phosphotrehalase-encoding gene treA. Appl. Environ. Microbiol. 77: 6841-6851. 21821737
Engels, V., and V.F. Wendisch. (2007). The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 189: 2955-2966. 17293426
Gordon, N., R. Rosenblum, A. Nussbaum-Shochat, E. Eliahoo, and O. Amster-Choder. (2015). A Search for Ribonucleic Antiterminator Sites in Bacterial Genomes: Not Only Antitermination? J. Mol. Microbiol. Biotechnol. 25: 143-153. 26159075
Hurley, J.H., H.R. Faber, D. Worthylake, N.D. Meadow, S. Roseman, D.W. Pettigrew, and S.J. Remington. (1993). Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science 259: 673-677. 8430315
Johnson, D.A., S.G. Tetu, K. Phillippy, J. Chen, Q. Ren, and I.T. Paulsen. (2008). High-throughput phenotypic characterization of Pseudomonas aeruginosa membrane transport genes. PLoS Genet 4: e1000211. 18833300
Khajanchi, B.K., E. Odeh, L. Gao, M.B. Jacobs, M.T. Philipp, T. Lin, and S.J. Norris. (2016). Phosphoenolpyruvate Phosphotransferase System Components Modulate Gene Transcription and Virulence of Borrelia burgdorferi. Infect. Immun. 84: 754-764. 26712207
Kotrba, P., M. Inui, and H. Yukawa. (2003). A single V317A or V317M substitution in Enzyme II of a newly identified β-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149: 1569-1580. 12777497
Liao, D.I., G. Kapadia, P. Reddy, M.H. Saier, Jr., J. Reizer, and O. Herzberg. (1991). The structure of the IIA domain of the glucose permease of Bacillus subtilisat a 2.2-Å resolution. Biochemistry 30: 9583-9594. 1911744
McCoy, J.G., Z. Ren, V. Stanevich, J. Lee, S. Mitra, E.J. Levin, S. Poget, M. Quick, W. Im, and M. Zhou. (2016). The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport. Structure 24: 956-964. 27161976
Mitchell, W.J. (2015). The Phosphotransferase System in Solventogenic Clostridia. J. Mol. Microbiol. Biotechnol. 25: 129-142. 26159074
Nguyen, T.X., M.R. Yen, R.D. Barabote, and M.H. Saier, Jr. (2006). Topological predictions for integral membrane permeases of the phosphoenolpyruvate:sugar phosphotransferase system. J. Mol. Microbiol. Biotechnol. 11: 345-360. 17114898
Pikis, A., S. Hess, I. Arnold, B. Erni, and J. Thompson. (2006). Genetic requirements for growth of Escherichia coli K12 on methyl-α-D-glucopyranoside and the five α-D-glucosyl-D-fructose isomers of sucrose. J. Biol. Chem. 281: 17900-17908. 16636060
Pikis, A., S. Immel, S.A. Robrish, and J. Thompson. (2002). Metabolism of sucrose and its five isomers by Fusobacterium mortiferum. Microbiology 148: 843-852. 11882720
Plumbridge, J. (2015). Regulation of the Utilization of Amino Sugars by Escherichia coli and Bacillus subtilis : Same Genes, Different Control. J. Mol. Microbiol. Biotechnol. 25: 154-167. 26159076
Postma, P.W., J.W. Lengeler, and G.R. Jacobson. (1996). Phosphoenolpyruvate:carbohydrate phosphotransferase systems. In: F.C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, Vol. 1, 2nd ed. Washington, DC: ASM Press, pp. 1149-1174.
Reizer, J., I.T. Paulsen, A. Reizer, F. Titgemeyer, and M.H. Saier, Jr. (1996). Novel phosphotransferase system genes revealed by bacterial genome analysis: the complete complement of pts genes in Mycoplasma genitalium. Microbial Comp. Genomics 1: 151-164. 9689210
Reizer, J., S. Bachem, A. Reizer, M. Arnaud, M.H. Saier, Jr., and J. Stülke. (1999). Novel phosphotransferase system genes revealed by genome analysis – the complete complement of PTS proteins encoded within the genome of Bacillus subtilis Microbiology 145: 3419-3429.
Reizer, J., V. Michotey, A. Reizer, and M.H. Saier, Jr. (1994). Novel phototransferase system genes revealed by bacterial genome analysis: unique, putative fructose- and glucoside-specific systems. Prot. Sci. 3: 440-450. 8019415
Robillard, G.T. and J. Broos. (1999). Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system. Biochim. Biophys. Acta 1422: 73-104. 10393270
Schöck, F. and M.K. Dahl. (1996). Analysis of DNA flanking the treA gene of Bacillus subtilis reveals genes encoding a putative specific enzyme IITre and a potential regulator of the trehalose operon. Gene 175: 59-63. 8917076
Shelburne, S.A., 3rd, D.B. Keith, M.T. Davenport, N. Horstmann, R.G. Brennan, and J.M. Musser. (2008). Molecular characterization of group A Streptococcus maltodextrin catabolism and its role in pharyngitis. Mol. Microbiol. 69: 436-452. 18485073
Steen, J.A., N. Bohlke, C.E. Vickers, and L.K. Nielsen. (2014). The trehalose phosphotransferase system (PTS) in E. coli W can transport low levels of sucrose that are sufficient to facilitate induction of the csc sucrose catabolism operon. PLoS One 9: e88688. 24586369
Thompson, J. and A. Pikis. (2012). Metabolism of sugars by genetically diverse species of oral Leptotrichia. Mol Oral Microbiol 27: 34-44. 22230464
Ujiie, H., T. Matsutani, H. Tomatsu, A. Fujihara, C. Ushida, Y. Miwa, Y. Fujita, H. Himeno, and A. Muto. (2009). Trans-translation is involved in the CcpA-dependent tagging and degradation of TreP in Bacillus subtilis. J Biochem 145: 59-66. 18977770
Vargas-Tah, A., L.M. Martínez, G. Hernández-Chávez, M. Rocha, A. Martínez, F. Bolívar, and G. Gosset. (2015). Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Microb Cell Fact 14: 6. 25592545
Vastermark, A. and M.H. Saier, Jr. (2016). Time to Stop Holding the Elevator: A New Piece of the Transport Protein Mechanism Puzzle. Structure 24: 845-846. 27276425
Wang, F., X. Xiao, A. Saito, and H. Schrempf. (2002). Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine. Mol. Genet. Genomics 268: 344-351. 12436256
Webb, A.J., K.A. Homer, and A.H. Hosie. (2007). A phosphoenolpyruvate-dependent phosphotransferase system is the principal maltose transporter in Streptococcus mutans. J. Bacteriol. 189: 3322-3327. 17277067
Yagur-Kroll, S., A. Ido, and O. Amster-Choder. (2009). Spatial arrangement of the β-glucoside transporter from Escherichia coli. J. Bacteriol. 191: 3086-3094. 19251853
Yamamoto, H., M. Serizawa, J. Thompson, and J. Sekiguchi. (2001). Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. J. Bacteriol. 183: 5110-5121. 11489864
Zurbriggen, A., P. Schneider, P. Bähler, U. Baumann, and B. Erni. (2010). Expression, purification, crystallization and preliminary X-ray analysis of the EIICGlc domain of the Escherichia coli glucose transporter. Acta Crystallogr Sect F Struct Biol Cryst Commun 66: 684-688. 20516600