TCID | Name | Domain | Kingdom/Phylum | Protein(s) |
---|---|---|---|---|
1.A.4.1.1 | Transient receptor potential (TRP) protein. Assembles in vivo as a homomultimeric channel, not as a heteromeric channel with TrpL as the subunit (Katz et al. 2013). | Eukaryota |
Metazoa, Arthropoda | TRP protein of Drosophila melanogaster (P19334) |
1.A.4.1.2 | TRP7 receptor-activated capacitative Ca2+ entry channel | Eukaryota |
Metazoa, Chordata | TRP7 of Mus musculus (Q9WVC5) |
1.A.4.1.3 | TRPC1 store-operated Ca2+ channel (Liu et al., 2003) (activated by the metabotropic [G- protein-dependent] glutamate receptor, mGluR1) (Kim et al., 2003) (controls salivary gland fluid secretion in mice (Liu et al., 2007a). Constitutively active TRPC1/C4-dependent background Ca2+ entry fine-tunes Ca2+ cycling in beating adult cardiomyocytes. Double TRPC1/C4-gene inactivation protects against development of maladaptive cardiac remodelling without altering cardiac or extracardiac functions contributing to this pathogenesis (Camacho Londoño et al. 2015). Regulated by drebrin (DBN1; 649 aas; Q16643) (Pabon et al. 2017). TRPC1 null mutations exacerbate memory loss and apoptosis induced by amyloid-beta (Li et al. 2018). Pulsed focused ultrasound (pFUS) acoustic radiation forces mechanically activate a Na+-containing TRPC1 (TC# 1.A.4..1.3) channel generating current upstream of voltage-gated Ca2+ channels (VGCC) rather than directly opening VGCC (Burks et al. 2019). | Eukaryota |
Metazoa, Chordata | TRPC1 of Homo sapiens (P48995) |
1.A.4.1.4 | TRPC3 store-operated non-selective cation channel (activated by thapsigargin and 2 acyl glycerol; forms a heteromeric channel with TrpC1, TC #1.A.4.1.3) (Liu et al., 2005). A structural model of the TRPC3 permeation pathway based on a sodium channel (TC# 1.A.1.14.5) with a localized selectivity filter and an occluding gate with evidence for allosteric coupling between the gate and the selectivity filter has been proposed (Ko et al. 2009; Lichtenegger et al. 2013). The channel may have a large internal chamber surrounded by signal sensing antennas (Mio et al. 2007). TRPC channels are involved in store-operated calcium entry and calcium homeostasis, and they are implicated in human diseases such as neurodegenerative disease, cardiac hypertrophy, and spinocerebellar ataxia (Fan et al. 2018). The structure in a lipid-occupied, closed state has been solved at 3.3 Å resolution. TRPC3 has four elbow-like membrane reentrant helices prior to the first transmembrane helix. The TRP helix is perpendicular to, and thus disengaged from, the pore-lining S6, suggesting a different gating mechanism from other TRP subfamily channels. The third transmembrane helix S3 is remarkably long, shaping a unique transmembrane domain, and constituting an extracellular domain that may serve as a sensor of external stimuli. Fan et al. 2018 identified two lipid binding sites, one being sandwiched between the pre-S1 elbow and the S4-S5 linker, and the other being close to the ion-conducting pore, where the conserved LWF motif of the TRPC family is located. The cytoplasmic domain allosterically modulates channel gating (Sierra-Valdez et al. 2018). This channel may be present in mitochondria (Parrasia et al. 2019). TRPC3 and TRPC6 channels are calcium-permeable non-selective cation channels. The gain-of-function (GOF) mutations of TRPC6 lead to familial focal segmental glomerulosclerosis (FSGS) in humans. Guo et al. 2022 reported the cryo-EM structures of human TRPC3 in both high-calcium and low-calcium conditions. They identified both inhibitory and activating calcium-binding sites in TRPC3 that couple intracellular calcium concentrations to the basal channel activity. These calcium sensors are structurally and functionally conserved in TRPC6. The GOF mutations of TRPC6 activate the channel by allosterically abolishing the inhibitory effects of intracellular calcium. Structures of human TRPC6 in complex with two chemically distinct inhibitors bound at different ligand-binding pockets revealed different conformations of the transmembrane domain (Guo et al. 2022). TRPC3 is primarily gated by lipids, and its surface expression is dependent on cholesterol (Clarke et al. 2022). Regulating the activity of the SOCE response via SARAF activity may allow therapeutic strategies for triple-negative breast cancer (Saldías et al. 2023). | Eukaryota |
Metazoa, Chordata | TRPC3 of Homo sapiens (Q13507) |
1.A.4.1.5 | Transient receptor potential canonical-6, TRPC6, a non-selective cation channel that is directly activated by diacylglycerol (DAG (Szabó et al. 2015). Mutation causes a particularly aggressive form of familial focal segmental glomerulosclerosis (Winn et al., 2005; Mukerji et al., 2007). Tang et al. 2018 presented the structure of the human TRPC6 homotetramer in complex with a high-affinity inhibitor, BTDM, solved by single-particle cryo-EM to 3.8 Å resolution. The structure shows a two-layer architecture in which the bell-shaped cytosolic layer holds the transmembrane layer. Extensive inter-subunit interactions of cytosolic domains, including the N-terminal ankyrin repeats and the C-terminal coiled-coil, contribute to the tetramer assembly. The high-affinity inhibitor BTDM wedges between the S5-S6 pore domain and voltage sensor-like domain to inhibit channel opening (Tang et al. 2018). TRPC6 may regulate the glomerular filtration rate by modulating mesangial cell contractile function through multiple Ca2+ signaling pathways (Li et al. 2017). Several proteins including podocin (8.A.21.1.2), nephrin (8.A.23.1.33), CD2AP (8.A.34.1.5) and TRPC6 form a macromolecular assembly that constitutes the slit-diaphragm in podocytes that resembles tight junctions (Mulukala et al. 2020). Two small molecules, GSK1702934A and M085, directly activate TRPC6 via a mechanism involving stimulation of the extracellular cavity formed by the pore helix and transmembrane helix S6 (Yang et al. 2021). Na+/Ca2+ exchanger, NCX1, and canonical transient receptor potential channel 6 (TRPC6) are recruited by STIM1 to mediate Store-Operated Calcium Entry in primary cortical neurons (Tedeschi et al. 2022). Guo et al. 2022 reported the cryo-EM structures of human TRPC3 in both high-calcium and low-calcium conditions. They identified both inhibitory and activating calcium-binding sites in TRPC3 that couple intracellular calcium concentrations to the basal channel activity. These calcium sensors are structurally and functionally conserved in TRPC6. The GOF mutations of TRPC6 activate the channel by allosterically abolishing the inhibitory effects of intracellular calcium. Structures of human TRPC6 in complex with two chemically distinct inhibitors bound at different ligand-binding pockets revealed different conformations of the transmembrane domain (Guo et al. 2022). The selective TRPC6 agonist, 3-(3-,4-Dihydro-6,7-dimethoxy-3,3-dimethyl-1-isoquinolinyl)-2H-1-benzopyran-2-one (C20) binds to the extracellular agonist binding site of TRPC6, protects hippocampal mushroom spines from amyloid toxicity in vitro, efficiently recovers synaptic plasticity in 5xFAD brain slices, penetrates the blood-brain barrier and recovers cognitive deficits in 5xFAD mice. Thus, C20 is the novel TRPC6-selective drug suitable to treat synaptic deficiency in Alzheimer's disease-affected hippocampal neurons (Zernov et al. 2022). Paraoxonase 2 (PON2) deficiency reproduces lipid alterations of diabetic and inflammatory glomerular disease while affecting TRPC6 signaling (Hagmann et al. 2022). Capsazepine (CPZ) inhibits TRPC6 conductance and is protective in adriamycin-induced nephropathy and diabetic glomerulopathy (Hagmann et al. 2023). The mammalian TRPC subfamily comprises seven transmembrane proteins (TRPC1-7) forming cation channels in the plasma membrane of mammalian cells. TRPC channels mediate Ca2+ and Na+ influx into cells. Amongst TRPCs, TRPC6 deficiency or increased activity due to gain-of-function mutations has been associated with multiple diseases, such as kidney, pulmonary, and neurological diseases. Indeed, the TRPC6 protein is expressed in various organs and is involved in diverse signalling pathways. The last decade saw a surge in studies concerning the physiological roles of TRPC6 and describing the development of new pharmacological tools modulating TRPC6 activity (Saqib et al. 2023). One defective TRPC6 gene copy is not sufficient to cause focal segmental glomerulosclerosis (FSGS), which is inherited as an autosomal dominant disease. Increased rather than reduced calcium influx through TRPC6 is required for podocyte cell death (Batool et al. 2023). Pharmacological activation of the TRPC6 channel prevents colitis progression (Nishiyama et al. 2024). Steroid-resistant nephrotic syndrome is due to variants of the TRPC6 gene (Zhao et al. 2024). | Eukaryota |
Metazoa, Chordata | TRPC6 of Homo sapiens (Q9Y210) |
1.A.4.1.6 | Sperm TRP-3 (SPE-41) Ca2+-permeable channel. Translocated from vesicles to the plasma membrane upon sperm activation in a process dependent on the 4TMS SPE-38 protein (8.A.36.1.1) (Singaravelu et al., 2012) during sperm-egg interactions leading to fertilization (Xu et al., 2003). | Eukaryota |
Metazoa, Nematoda | TRP-3 of Caenorhabditis elegans (AAQ22724) |
1.A.4.1.7 | Short transient receptor channel 5 (TrpC5 or Htrp5) (transports Ca2+ and Sr2+ in the presence of Orai1 and STIM1 (TC# 1.A.52.1.1) (Ma et al., 2008). It is a cold-transducer in the peripheral nervous system (Zimmermann et al., 2011). A small-molecule inhibitor suppresses progressive kidney disease in rats (Zhou et al. 2017). ORAI and TRP, and the transmembrane Ca2+ sensors, stromal interaction molecules (STIMs), are involved in thrombosis and thrombo-inflammation in platelets and immune cells. Disregulated store-operated Ca2+ (SOCE) fluxes in platelets and immune cells are responsible, and the potential of SOCE inhibition as a therapeutic option to prevent or treat arterial thrombosis as well as thrombo-inflammatory disease states such as ischemic stroke have been considered (Mammadova-Bach et al. 2019). The molecular architecture of the Galpha(i)-bound TRPC5 ion channel has been solved (Won et al. 2023). G-protein coupled receptors (GPCRs) and ion channels serve as key molecular switches through which extracellular stimuli are transformed into intracellular effects, and it has long been postulated that ion channels are direct effector molecules of the alpha subunit of G-proteins (Galpha; see TC family 8.A.43). Won et al. 2023 presented cryo-EM structures of the human TRPC5-Galpha(i3) complexes with a 4:4 stoichiometry in lipid nanodiscs. Galpha(i3) binds to the ankyrin repeat edge of TRPC5 ~ 50 Å away from the cell membrane. Electrophysiological analyses showed that Galpha(i3) increases the sensitivity of TRPC5 to phosphatidylinositol 4,5-bisphosphate (PIP(2)), thereby rendering TRPC5 more easily opened in the cell membrane, where the concentration of PIP(2) is physiologically regulated. These observations show that ion channels are one of the direct effector molecules of Galpha proteins triggered by GPCR activation-providing a structural framework for unraveling the crosstalk between two major classes of transmembrane proteins: GPCRs and ion channels (Won et al. 2023). | Eukaryota |
Metazoa, Chordata | TrpC5 of Homo sapiens (Q9UL62) |
1.A.4.1.8 | TrpL (Trp-like), isoform A (1124 aas). A light-sensitive calcium channel that is required for inositide-mediated Ca2+ entry in the retina during phospholipase C (PLC)-mediated phototransduction (Lan et al. 1998; Chyb et al. 1999). It is required for vision in the dark and in dim light. and binds calmodulin. Trp and TrpL act together in the light response (Bähner et al. 2002). TrpL assembles in vivo as a homo-multimeric channe, not as a hetero-meric channels as reported previously (Katz et al. 2013). | Eukaryota |
Metazoa, Arthropoda | TrpL of Drosophila melanogaster (P48994) |
1.A.4.1.9 | Trp-1 isoform channel; controls nicotne-dependent behavior (Xiao and Xu 2009). TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan-TRPC axis therefore fine tunes cytoskeletal organization and cell behavior (Gopal et al. 2015). | Eukaryota |
Metazoa, Nematoda | Trp-1 of Caenorhabditis elegans |
1.A.4.1.10 | Trp-2 channel; controls nicotine-dependent behavior (Xiao and Xu 2009). The TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan-TRPC axis therefore fine tunes cytoskeletal organization and cell behavior (Gopal et al. 2015). | Eukaryota |
Metazoa, Nematoda | Trp-2 of Caenorhabditis elegans |
1.A.4.1.11 | TRP channel homologue, Trp1, of 766 aas and 6 - 9 TMSs. Contains Ankyrin - PKD1 - TrpC channel domains. Exhibits properties of mammalian signal transduction Trp channels (Arias-Darraz et al. 2015). Photoswitchable reagents are used for investigating various types of TRPC channels, including TRPC2, TRPC3, TRPC5, and TRPC6, to gain new insights into the gating mechanisms and functions of these channels (Ojha et al. 2023). | Eukaryota |
Viridiplantae, Chlorophyta | TRP channel homologue of Chlamydomonas reinhardtii (Chlamydomonas smithii) |
1.A.4.1.12 | TrpC4 of 977aas. In epidermal keratinocytes, a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro (Gopal et al. 2015). Constitutively active TRPC1/C4-dependent background Ca2+ entry fine-tunes Ca2+ cycling in beating adult cardiomyocytes. Double TRPC1/C4-gene inactivation protects against development of maladaptive cardiac remodelling without altering cardiac or extracardiac functions contributing to this pathogenesis (Camacho Londoño et al. 2015). A cryo-EM structure of TRPC4 in its unliganded (apo) state has beeen solved to an overall resolution of 3.3 A. It reveals a unique architecture with a long pore loop stabilized by a disulfide bond. Beyond the shared tetrameric six-transmembrane fold, the TRPC4 structure deviates from other TRP channels with a unique N-terminal cytosolic domain which forms extensive aromatic contacts with the TRP and the C-terminal domains (Duan et al. 2018). | Eukaryota |
Metazoa, Chordata | TrpC4 of Homo sapiens |
1.A.4.1.13 | Transient receptor potential ion channel protein, TRP6, of 2341 aas and 6 - 9 TMSs. | Eukaryota |
Viridiplantae, Chlorophyta | TRP6 OF Chlamydomonas reinhardtii (Chlamydomonas smithii) |
1.A.4.1.14 | Flagellar associated calcium channel protein of 1,729 aas, FAP148 (Wheeler and Brownlee 2008). | Eukaryota |
Viridiplantae, Chlorophyta | FAP148 of Chlamydomonas reinhardtii |
1.A.4.1.15 | Transient potential protein-gamma, Trpγ, of 1128 aas and 10 TMSs. A light-sensitive cation/calcium channel that is required for inositide-mediated Ca2+ entry in the retina during phospholipase C (PLC)-mediated phototransduction. It forms a regulated cation channel when heteromultimerized with TrpL (Xu et al. 2000). | Eukaryota |
Metazoa, Arthropoda | TrpL of Drosophila melanogaster (Fruit fly) |
1.A.4.1.16 | Short transient receptor potential channel 7 of 722 aas and 7 or 8 TMSs plus the P-loop. TRPC3.6, TRPC3.7, and TRPV4.7 are important for thermal regulation in oysters (Fu et al. 2021). | Eukaryota |
Metazoa, Mollusca | TRP channel 7 of Crassostrea gigas (Pacific oyster) (Crassostrea angulata) |
1.A.4.2.1 | Vanilloid receptor subtype 1 (VR1 or TRPV1) (noxious, heat-sensitive [opens with increasing temperatures; e.g., >42°C]; also sensitive to acidic pH and voltage and inflamation; serves as the receptor for the alkaloid irritant, capsaicin, for resiniferatoxin and for endo-cannabinoids (Murillo-Rodriguez et al. 2017). Resiniferatoxin binds to the capsaicin receptor (TRPV1) near the extracellular side of the S4 transmembrane domain (Chou et al. 2004). It is regulated by bradykinin and prostaglandin E2) (contains a C-terminal region, adjacent to the channel gate, that determines the coupling of stimulus sensing and channel opening) (Garcia-Sanz et al., 2007; Matta and Ahern, 2007). It is activated and sensitized by local anesthetics in sensory neurons (Leffler et al., 2008). A bivalent tarantula toxin activates the capsaicin receptor (TRPV1) by targeting the outer pore domain (Bohlen et al., 2010). Single-channel properties of TRPV1 are modulated by phosphorylation (Studer and McNaughton, 2010). TRPV1 mediates an itch associated response (Kim et al., 2011). The thermosensitive TRP channel pore turret is part of the temperature activation apparatus (Yang et al., 2010). Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels have been identified (Yao et al., 2011). TRPV1 opening is associated with major structural rearrangements in the outer pore, including the pore helix and selectivity filter, as well as pronounced dilation of a hydrophobic constriction at the lower gate, suggesting a dual gating mechanism (Cao et al. 2013). Allosteric coupling between upper and lower gates may account for modulation exhibited by TRPV1 and other TRP channels (Liao et al. 2013). TRPV1 regulates longevity and metabolism by neuropeptides in mice (Riera et al. 2014). The pore of TRPV1 contains the structural elements sufficient for activation by noxious heat (Zhang et al. 2017). In bull sperm, TRPV1 functions in the regulation of motility and the acrosome reaction (Kumar et al. 2019). The dynamics of water in the transmembrane pore of TRPV1 have been studied (Trofimov et al. 2019). TRPV1 - 6 channel subunits do not combine arbitrarily. With the exception of TRPV5 and TRPV6, TRPV channel subunits preferentially assemble into homomeric complexes (Hellwig et al. 2005). TrpV1-gated ion channels have been used as sensors for imaging applications (Zhu et al. 2021). Capsaicin and protons differently modulate the activation kinetics of the mouse TrpV1 channel induced by depolarization (Takahashi et al. 2021). The impact of TRPV1 on cancer pathogenesis and therapy has been reviewed (Li et al. 2021). TRPV1 may be an analgesic target for patients experiencing pain after oral irradiation (Lai et al. 2021). The vanilloid (capsaicin) receptor TRPV1 functions in blood pressure regulation and may be a therapeutic target in hypertension (Szallasi 2023). Chu et al. 2023 elucidated the redox state of C387-C391 mediated long-range allostery of TRPV1, which provided new insights into the activation mechanism of TRPV1. TRPV1 channels are players in the reticulum-mitochondria Ca2+ coupling in a rat cardiomyoblast cell line (Tessier et al. 2023). TRPV1 is a target for recovery from chronic pain, producing analgesic effects after its inhibition. The study of TrpV1 channel antagonists revealed possible drug design purposes (Gianibbi et al. 2024). | Eukaryota |
Metazoa, Chordata | TrpV1 or VR1 of Rattus norvegicus |
1.A.4.2.2 | Stretch-inhibitable non-selective cation channel, SIC | Eukaryota |
Metazoa, Chordata | SIC of Rattus norvegicus |
1.A.4.2.3 | Vitamin D-responsive, apical, epithelial Ca2+ channel, ECaC | Eukaryota |
Metazoa, Chordata | ECaC of Oryctolagus cuniculus |
1.A.4.2.4 | Insulin-like growth factor I-regulated Ca2+ channel | Eukaryota |
Metazoa, Chordata | IGF-regulated Ca2+ channel of Mus musculus |
1.A.4.2.5 | Vanilloid receptor-related, osmotically activated channel, VR-OAC (also called TRPV4, VRL2, VROAC and Trp12); required for bladder voiding in mice (Gevaert et al., 2007). Regulated by Pacsin3 via its SH3 domain which affects its subcellular localization and inhibits its activity in a stimulus-specific fashion (D'hoedt et al., 2008). Responsible for autosomal dominant brachyolmia (Rock et al., 2008). Multiple gating mechanisms have been demonstrated for TRPV4 (Loukin et al., 2010). TRPV4 Ca2+ signalling regulates endothelial vascular function (Sonkusare et al., 2012) and adipose oxidative metabolism, inflammation and energy homeostasis (Ye et al. 2012). H2O2 induces Ca2+ influx into microvascular endothelial cells via TrpV4 (Suresh et al. 2015). TrpV4 orthologs are volume-sensors, rather than osmo-sensors (Toft-Bertelsen et al. 2017) that mediate fluid secretion by the ciliary body. They are important for vertebrate vision by providing nutritive support to the cornea and lens, and by maintaining intraocular pressure (Jo et al. 2016). Interacts with the A-kinase anchor protein 5 (AKAP5 or AKAP79 of 427 aas; TC# 8.A.28.1.6; P24588) (Mack and Fischer 2017). Mutations in TRPV4 are associated with accelerated chondrogenic differentiation of dental pulp stem cells (Nonaka et al. 2019). The homolog in Cynops pyrrhogaster (85% identical) is inhibited by RN1734 and may play a role in the sperm acrosome reaction (Kon et al. 2019). TRPV4 antagonism attenuates aortic inflammation and remodeling via decreased smooth muscle cell activation and neutrophil transendothelial migration (Shannon et al. 2020). It forms a tight complex with CD98hc (TC# 8.A.9.2.2) and beta1 integrin (TC# 9.B.87.1.8) in focal adhesions where mechanochemical conversion takes place. CD98hc knock down inhibits TRPV4-mediated calcium influx induced by mechanical forces, but not by chemical activators, thus confirming the mechanospecificity of this signaling response. Molecular analysis revealed that forces applied to beta1 integrin must be transmitted from its cytoplasmic C-terminus via the CD98hc cytoplasmic tail to the ankyrin repeat domain of TRPV4 in order to produce ultra-rapid, force-induced, channel activation within the focal adhesion (Potla et al. 2020). TRPV4 mutations, resulting in severe gain of function, cause mixed neuropathy and skeletal phenotypes in humans (Taga et al. 2022). Cell swelling, heat, and chemical agonists use distinct pathways for the activation of TRPV4 (Vriens et al. 2004). Human TRPV4 is involved in immune activation, and because of its diverse engagement in the neuronal and immune systems, it is a potential therapeutic target for several immune-related disorders (Acharya et al. 2022). It is one of the major non-selective cation channel proteins that plays a crucial role in sensing biotic and abiotic stresses, such as pathogen infection, temperature, mechanical pressure and osmotic pressure changes by regulating Ca2+ homeostasis (He et al. 2022). The structure of human TRPV4 in complex with GTPase RhoAhas been determined, providing a template for the design of future therapeutics for treatment of TRPV4-related diseases (Nadezhdin et al. 2023). AQP4-independent TRPV4 modulation of plasma membrane water permeability has been documented (Barile et al. 2023). The possibility to tune plasma membrane water permeability more finely through TRPV4 might represent a protective mechanism in cells constantly facing severe osmotic challenges to avoid the potential deleterious effects of the rapid cell swelling occurring via AQP channels (Barile et al. 2023). Hydrophobic gating and bundle-crossing mechanisms co-exist and complement one and another in the human TRPV4 channel. In particular, a single hydrophilic mutation in the lower pore can increase pore hydration and reduce the ion permeation free energy barrier by about half without affecting the bundle crossing (Huang and Chen 2023). TRPV4 plays a role in programmed cell death (Ma et al. 2024). TRPV4 regulates collagen remodeling and could pave the way for new approaches to manage fibrotic lesions (Wang et al. 2024). Inflammation-induced TRPV4 channels exacerbate blood-brain barrier dysfunction in multiple sclerosis (Hansen et al. 2024). TRPV4 may promote hepatitis B virus (HBV) replication and capsid assembly via methylation modification (Zhang et al. 2024). Calcium-activated potassium channels function as amplifiers of TRPV4-mediated pulmonary edema formation in male mice (Li et al. 2024).
| Eukaryota |
Metazoa, Chordata | VR-OAC (TrpV4) of Rattus norvegicus |
1.A.4.2.6 | Osmosensitive transient receptor potential channel 3, O-TRP3 | Eukaryota |
Metazoa, Chordata | O-TRP3 of Mus musculus |
1.A.4.2.7 | Intestinal endocyte Ca2+ (Sr2+; Ba2+) entry channel, CaT1. Excision of the Trpv6 gene leads to severe defects in epididymal Ca2+ absorption and male fertility as does the single D541A pore mutation (Weissgerber et al., 2012). | Eukaryota |
Metazoa, Chordata | CaT1 of Rattus norvegicus |
1.A.4.2.8 | The noxious heat (>52°C)-sensitive vanilloid-like receptor cation selective channel, TRPV2. Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate (Mercado et al., 2010). Deleting the first N-terminal 74 residues preceding the ankyrin repeat domain (ARD) shows a key role for this region in targeting the protein to the membrane. Co-translational insertion of the membrane-embedded region occurs with the TM1-TM4 and TM5-TM6 regions assembling as independent folding domains. ARD is not required for TM domain insertion into the membrane (Doñate-Macian et al. 2015). The TRPV2 structure has been solved at 4 Å resolution by cryoEM (Zubcevic et al. 2016). Formation of a physical complex between mouse TRPV2 (GRC) and the mouse RGA protein promotes cell surface expression of TRPV2 (Stokes et al. 2005). The role of Ca2+ infllux via TRPV1 in cell death and survival related to cancer has been evaluated (Zhai et al. 2020). A helix-turn-helix motif for high temperature dependence of TRPV2 has been identified (Liu and Qin 2021). As noted above, TRPV2 is a ligand-operated temperature sensor. Zhang et al. 2022 combined calcium imaging and patch-clamp electrophysiology with cryo-EM to explore how TRPV2 activity is modulated by the phytocannabinoid Δ9-tetrahydrocannabiorcol (C16) and by probenecid. C16 and probenecid act in concert to stimulate TRPV2 responses including histamine release from mast cells. Each ligand causes distinct conformational changes in TRPV2. Although the binding for probenecid remains elusive, C16 associates within the vanilloid pocket. As such, the C16 binding location is distinct from that of cannabidiol, partially overlapping with the binding site of the TRPV2 inhibitor piperlongumine (Zhang et al. 2022). The cation-permeable TRPV2 channel is important for cardiac and immune cell function (Gochman et al. 2023). Cannabidiol (CBD), a non-psychoactive cannabinoid of clinical relevance, is one of the few molecules known to activate TRPV2. Using the patch-clamp technique, Gochman et al. 2023 discovered that CBD can sensitize current responses of the rat TRPV2 channel to the synthetic agonist 2-aminoethoxydiphenyl borate (2-APB) by over two orders of magnitude, without sensitizing channels to activation by moderate (40°C) heat. Using cryo-EM, Gochman et al. 2023 uncovered a new small-molecule binding site in the pore domain of rTRPV2 in addition to a nearby CBD site. Intrinsically disordered regions in TRPV2 mediate protein-protein interactions (Sanganna Gari et al. 2023). | Eukaryota |
Metazoa, Chordata | TRPV2 of Homo sapiens |
1.A.4.2.9 | The temperature (heat; >39°C)-sensitive, capsaicin-insensitive receptor cation-selective channel, TRPV3 or TRL3 (may form heterooligomers with VR1 (TRPV1; TC #1.A.4.2.1)). Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain (Moussaieff et al., 2008). TRPV3 is activated by synthetic small-molecule chemicals and natural compounds from plants as well as warm temperatures. Its function is regulated by a variety of physiological factors including extracellular divalent cations and acidic pH, intracellular ATP, membrane voltage, and arachidonic acid. It shows a broad expression pattern in both neuronal and non-neuronal tissues including epidermal keratinocytes, epithelial cells in the gut, endothelial cells in blood vessels, and neurons in dorsal root ganglia and the CNS. TRPV3 null mice exhibit abnormal hair morphogenesis and compromised skin barrier function, and it may play critical roles in inflammatory skin disorders, itch, and pain sensation (Luo and Hu 2014). TRPV3 gating involves large rearrangements at the cytoplasmic inter-protomer interface, and this motion triggers coupling between cytoplasmic and transmembrane domains, priming the channel for opening (Zubcevic et al. 2019). Mutations in TRPV3 cause painful focal plantar keratoderma (Peters et al. 2020). TRPV3 is a temperature-sensitive, nonselective cation channel expressed prominently in skin keratinocytes that plays important roles in hair morphogenesis and maintenance of epidermal barrier function. Mechanisms of proton inhibition and sensitization have been discussed (Wang et al. 2021). Mechanisms of proton inhibition and sensitization of TRPV3 have been considered (Wang et al. 2021). TRPV3 is predominantly expressed in skin keratinocytes and has been implicated in cutaneous sensation and associated with numerous skin pathologies and cancers. TRPV3 is inhibited by the natural coumarin derivative osthole, an active ingredient of Cnidium monnieri, which has been used in traditional Chinese medicine for the treatment of various human diseases. Neuberger et al. 2021 presented cryo-EM structures of TRPV3 in complex with osthole, revealing two types of osthole binding sites in the transmembrane region of TRPV3 that coincide with the binding sites of agonist 2-APB. Osthole binding converts the channel pore into a previously unidentified conformation with a widely open selectivity filter and closed intracellular gate. The structures provide insight into competitive inhibition of TRPV3 by osthole (Neuberger et al. 2021). Scutellarein attenuates atopic dermatitis by selectively inhibiting TRP Vanilloid 3 (Wang et al. 2022). TRPV3 involvement in itching, heat pain, hair development, and TRPV3-related skin diseases has been reviewed (Guo et al. 2023). Temperature-sensitive contact modes allosterically gate TRPV3 (Burns et al. 2023). More than 210 structures from more than 20 different TRP channels have been determined, and all are tetramers. TrpV3 exhibits the pore-dilation phenomenon, whereby prolonged activation leads to increased conductance, permeability to large ions and loss of rectification (Lansky et al. 2023). TRPV3 can exist in a pentameric state which is in dynamic equilibrium with the canonical tetramer through membrane diffusive protomer exchange. The pentamer population increased upon diphenylboronic anhydride (DPBA) addition, an agonist that has been shown to induce TRPV3 pore dilation with a larger pore size (Lansky et al. 2023). TRPV3 is a candidate gene for the suri phenotype in the alpaca (Pallotti et al. 2024). | Eukaryota |
Metazoa, Chordata | TRPV3 of Homo sapiens |
1.A.4.2.10 | TRPV5 epithelial Ca2+ channel (ECaC1) (forms homo- and heterotetrameric channels with TRPV6; requires the S100A10-annexin 2 complex for routing to the plasma membrane) (Hoenderop et al., 2003; van de Graaf et al., 2003). The kidney maintains whole body calcium homoeostasis due to the reabsorption of Ca2+ filtered by the kidney glomerulus. TRPV5 regulates urinary Ca2+ excretion by mediating active Ca2+ reabsorption in the distal convoluted tubule of the kidney. The histidine kinase, nucleoside diphosphate kinase B (NDPK-B), activates TRPV5 channel activity and Ca2+ flux, and this activation requires histidine 711 in the carboxy terminal tail of TRPV5. In addition, the histidine phosphatase, protein histidine phosphatase 1 (PHPT1), inhibits NDPK-B activated TRPV5 (Cai et al. 2014). TRPV5 also transports cadmium (Cd2+). The L530R mutation is associated with recurrent kidney stones (Wang et al. 2017). May be stabilized by Mucin-1 (Muc1; P15941) (Al-Bataineh et al. 2017). TRPV5 inhibitors have been identified (Hughes et al. 2019). A modular and reusable model of epithelial transport in the proximal convoluted tubule of the kidney has appeared (Noroozbabaee et al. 2022). Only TrpV5 and TrpV6 are calcium selective, while others are general for inorganic cations, and an explanatory mechanism has been proposed (Ives et al. 2023). The structural basis for the activation of TRPV5 channels by long-chain acyl-Coenzyme-Ahas been elucidated (Lee et al. 2023). | Eukaryota |
Metazoa, Chordata | TRPV5 of Homo sapiens (NP_062815) |
1.A.4.2.11 | TRPV6 epithelial Ca2+ channel (ECaC2) (forms homo- and heterotetrameric channels with TRPV5; requires the S100A10-annexin 2 complex for routing to the plasma membrane) (Hoenderop et al., 2003; van de Graaf et al., 2003). Epithelial TrpV6, but not TrpV5, is inhibited by the regulator of G-protein signaling 2 (RGS2; Q9JHX0; 211 aas) by direct binding (Schoeber et al., 2006). Calmodulin (CaM) positively affects TRPV6 activity upon Ca2+ binding to EF-hands 3 and 4, located in the high Ca2+ affinity CaM C-terminus (Lambers et al. 2004). Cyclophilin B is an accessory activating protein (Stumpf et al., 2008). The crystal structure of rat TRPV6 at 3.25 A resolution revealed shared and unique features compared with other TRP channels (Saotome et al. 2016). Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K+ channel-like transmembrane domain, Ca2+ selectivity is determined by direct coordination of Ca2+ by a ring of aspartate side chains in the selectivity filter (Saotome et al. 2016). Replacing Gly-516 within the cytosolic S4-S5 linker (conserved in all TRP channel proteins) by ser forces the channels into an open conformation, thereby enhancing constitutive Ca2+ entry and preventing inactivation (Hofmann et al. 2016). Tetrameric ion channels have either swapped or non-swapped arrangements of the S1-S4 and pore domains. Singh et al. 2017 showed that mutations in the transmembrane domain can result in conversion from a domain-swapped to the non-swapped fold. These results raise the possibility that a single ion channel subtype can fold into either arrangement in vivo, affecting its function in normal or disease states. Cryo-EM structures of human TRPV6 in the open and closed states shows that the channel selectivity filter adopts similar conformations in both states, consistent with its explicit role in ion permeation. The iris-like channel opening is accompanied by an alpha-to-pi-helical transition in the pore-lining transmembrane helix S6 at an alanine hinge just below the selectivity filter. As a result of this transition, the S6 helices bend and rotate, exposing different residues to the ion channel pore in the open and closed states (McGoldrick et al. 2017). TRPV6 is an epithelial Ca2+-selective channel associated with transient neonatal hyperparathyroidism (TNHP), an autosomal-recessive disease caused by TRPV6 mutations that affect maternal-fetal calcium transport (Suzuki et al. 2018). TRPV6 mediates calcium uptake in epithelia, and its expression increases in numerous types of cancer while inhibitors suppress tumor growth. Singh et al. 2018 presented crystal and cryo-EM structures of human and rat TRPV6 bound to 2-aminoethoxydiphenyl borate (2-APB), a TRPV6 inhibitor and modulator of numerous TRP channels. 2-APB binds to TRPV6 in a pocket formed by the cytoplasmic half of the S1-S4 transmembrane helix bundle. 2-APB induces TRPV6 channel closure by modulating protein-lipid interactions. The 2-APB binding site may be present in other members of vanilloid subfamily TRP channels. The crystal structure has been determined (see 30299652 and Yelshanskaya et al. 2020). Novel mutations in TRPV6 give rise to the spectrum of transient neonatal hyperparathyroidism (Suzuki et al. 2020). TRPV6) plays roles in calcium absorption in epithelia and bone and is involved in human diseases including vitamin-D deficiency, osteoporosis, and cancer. Cai et al. 2020 showed that the TRPV6 intramolecular S4-S5 linker to the C-terminal TRP helix (L/C) and N-terminal pre-S1 helix to TRP helix (N/C) interactions, mediated by Arg470:Trp593 and Trp321:Ile597 bonding, respectively, are autoinhibitory and are required for maintaining TRPV6 at basal states. Disruption of either interaction by mutations or blocking peptides activates TRPV6. The N/C interaction depends on the L/C interaction but not inversely. Three cationic residues in S5 or the C terminus are involved in binding PIP2 to suppress both interactions, thereby activating TRPV6 (Cai et al. 2020). The biochemistry and pathophysiology of TRPV6 calcium channels have been reviewed (Walker and Vuister 2023). The structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, inhibits cell invasion and metastasis of cancer cells. Cryo-EM combined with other techniques revealed that genistein binds in the intracellular half of the TRPV6 pore and acts as an ion channel blocker and gating modifier. Genistein binding to the open channel causes pore closure and a two-fold symmetrical conformational rearrangement in the S4-S5 and S6-TRP helix regions (Neuberger et al. 2023). TRPV6 is also inhibited by the phytocannabinoid tetrahydrocannabivarin (Neuberger et al. 2023). | Eukaryota |
Metazoa, Chordata | TRPV6 of Homo sapiens (NP_071858) |
1.A.4.2.12 | Epithelial calcium channel, ECaC (Liao et al., 2007). | Eukaryota |
Metazoa, Chordata | ECaC of Danio rerio (Q6JQN0) |
1.A.4.2.13 | TrpV1 of 839 aas and ~ 6 TMSs. Molecular determinants of vanilloid sensitivity have been examined (Gavva et al. 2004). Ligand-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. TRPV1 channels are present in odontoblasts, suggesting that odontoblasts may directly respond to noxious stimuli such as a thermal-heat stimulus (Okumura et al. 2005). It may mediate proton influx and be involved in intracellular acidosis in nociceptive neurons. It is also involved in mediating inflammatory pain and hyperalgesia (Benemei et al. 2015). The 3.4 Å resolution structure shows that the overall fold is the same as for voltage-gated ion channels (TC# 1.A.1) (Liao et al. 2013). Capsaicin-induced apoptosis in glioma cells is mediated by TRPV1 (Amantini et al. 2007). Capsaicin binds to a pocket formed by the channel's TMSs, where it takes a "tail-up, head-down" configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by "pull-and-contact" with the S4-S5 linker (Yang and Zheng 2017). Several protein kinases, including PKD1 (protein kinase D1), Cdk5 (cyclin-dependent kinase 5) and LIMK (LIM- motif containing kinase) regulate TRPV1 and inflammatory thermal hyperalgesia (Zhang and Wang 2017). TrpV1 and TrpA1 are inflammatory mediators causing cutaneous chronic itch in several diseases (Xie and Li 2018). The locations and characteristics of volatile general anesthetic binding sites in the transmembrane domain of TRPV1 have been examined (Jorgensen and Domene 2018). The TRPV1 ion channel is a neuronal sensor that plays an important role in nociception and neuropathic as well as inflammatory pain. In clinical trials, hyperthermia and thermo-hypoaesthesia are major side effects of TRPV1 antagonists (Damann et al. 2020). The TRPV1 ion channel is a polymodal sensor integrating stimuli from molecular modulators with temperature, pH and transmembrane potential. Temperature-dependent gating may constitute the molecular basis for its role in heat sensation and body temperature regulation. Damann et al. 2020 characterized the prototypic small molecule TRPV1 inhibitors GRT12360V and GRTE16523. The oxidizing reagent copper-o-phenanthroline is an open channel blocker of TRPV1 (Tousova et al. 2004). Lack of TRPV1 aggravates obesity-associated hypertension through the disturbance of mitochondrial Ca2+ homeostasis in brown adipose tissue (Li et al. 2022). Lipoic/Capsaicin-related amides are TRPV1 agonists endowed with protective properties against oxidative stress (Brizzi et al. 2022). Agonistic/antagonistic properties of lactones in food flavors on the sensory ion channels, TRPV1 and TRPA1 have been reviewed (Ogawa et al. 2022). TRPV1 channel modulators provide a prospective therapy for diabetic neuropathic pain (Liu et al. 2023). Drosophila appear to possess intricate pain sensitization and modulation mechanisms similar to those in mammals (Jang et al. 2023). Barbamide enhances the effect of the TRPV1 agonist capsaicin and enhanced store-operated calcium entry (SOCE) responses in mice after depletion of intracellular calcium (Hough et al. 2023). The safety and efficacy of topical ocular SAF312 (Libvatrep) in post-photorefractive keratectomy (PRK) pain, an inhibitor of TRPV1, has been evaluated (Thompson et al. 2023). Modulation of membrane trafficking of AQP5 in the lens in response to changes in zonular tension is mediated by TRPV1 (Petrova et al. 2023). The TRPV1 channel, in addition to being associated with pain, plays a role in immune regulation, and their dysregulation frequently affects the development of rheumatoid arthritis (Qu et al. 2023). Irreversible protein unfolding, which is generally thought to be destructive to physiological function, is essential to TRPV1 thermal transduction and, possibly, to other strongly temperature-dependent processes in biology (Mugo et al. 2023). Strong pathogenetic associations of TRPV1 with neurodegenerative diseases (NDs), in particular Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) via regulating neuroinflammation have been forthcming. Therapeutic effects of TRPV1 agonists and antagoniststs on the treatment of AD and PD in animal models are emerging. Mugo et al. 2023 summarized the current understanding of TRPV1's effects and its agonists and antagonists as a therapeutic means in neurodegenerative diseases, and highlight future treatment strategies using natural TRPV1 agonists. | Eukaryota |
Metazoa, Chordata | TrpV1 of Homo sapiens |
1.A.4.2.14 | Epithelial calcium channel 2, ECaC2; TrpV6 of 719 aas and 6 TMSs. It displays all structural features typical for mammalian ECaCs including three ankyrin repeats, six transmembrane domains, and a putative pore region between TM V and TM VI (Qiu and Hogstrand 2004). | Eukaryota |
Metazoa, Chordata | ECaC2 of Takifugu rubripes (Japanese pufferfish) (Fugu rubripes) |
1.A.4.3.1 | Olfactory, mechanosensitive channel. Forms a complex with Stim1 and Orai1 (TC# 1.A.52.1.1) which is required for SOC currents (Cheng et al., 2008) (most similar to 1.A.4.8.1, but both are most closely related to 1.A.4.2). Serves as a chemo-, osmo- and touch sensation receptor (Xiao and Xu 2009). | Eukaryota |
Metazoa, Nematoda | Olfactory channel of Caenorhabditis elegans |
1.A.4.3.2 | The Nanchung (Nan) hearing ion channel; mediates hypo-osmotically activated Ca2+ influx in chordotonal neurons of insects (Kim et al., 2003). Nanchung is the "dry" humidity receptor, one of two hygrosensation receptors. These two transient receptor potential channels are needed for sensing humidity. The other is Water witch (Wtrw), involved in detecting moist air. Neurons associated with specialized sensory hairs in the third segment of the antenna express these channels, and neurons expressing Wtrw and Nan project to central nervous system regions associated with mechanosensation. Construction of the hygrosensing system with opposing receptors may allow an organism to very sensitively detect changes in environmental humidity (Liu et al. 2007). Two commercial insecticides, pymetrozine and pyrifluquinazon, target the heteromeric TRPV ion channel complex which is specifically expressed in the chordotonal organ neurons in Drosophila species and may play roles in male-specific behavior (Mao et al. 2018). | Eukaryota |
Metazoa, Arthropoda | Nan of Drosophila melanogaster (833 aas; Q9VUD5) |
1.A.4.3.3 | TrpV-type Osm-2 (OSM2) chemo-, osmo- and touch sensation receptor channel (Xiao and Xu 2009). It is also called OCR-2. To survive, C. elegans depends on sensing soluble chemicals with transmembrane proteins (TPs) in the cilia of its chemosensory neurons. Cilia rely on intraflagellar transport (IFT) to facilitate the distribution of cargo, such as TPs, along the ciliary axoneme (van Krugten et al. 2022). IFT and diffusion in ciliary dynamics contribute to ciliary signal transduction and chemosensing. | Eukaryota |
Metazoa, Nematoda | Osm-2 of Caenorhabditis elegans |
1.A.4.3.4 | TRP channel homologue of 1240 aas | Eukaryota |
TRP channel homologue of Ectocarpus siliculosus | |
1.A.4.3.5 | TRP channel homologue of 1724 aas | Eukaryota |
TRP channel homologue of Ectocarpus siliculosus (Brown alga) | |
1.A.4.3.6 | INACTIVE of 1123 aas and 6 probable TMSs between residues 380 and 660. The sensory ciliary function underlying hearing in the adult fly requires an active maintenance program which involves DmIFT88 and at least two of its signalling transmembrane cargoes, DmGucy2d and Inactive. | Eukaryota |
Metazoa, Arthropoda | Inactive of Drosophila melanogaster (fruit fly) |
1.A.4.4.1 | Vacuolar, voltage-dependent cation-selective, Ca2+-activated channel, YVC1. (Yeast vacuolar conductance protein 1; also called TrpY1; Yor088w) (Chang et al., 2009). Activated by stretch to release vacuolar Ca2+ into the cytoplasm upon osmotic upshock (Zhou et al. 2005). (Also activated by glucose, indole and other aromatic compounds (Haynes et al., 2008; Groppi et al. 2011)). Glutathione activates by reversible glutathionylation of specific cysteyl residues in YVC1 (Chandel et al. 2016). Channel activity is activated by cytoplasmic Ca2+ and inhibited by vacuolar lumen Ca2+, and two residues, D401 and D405, are involved in Ca2+ sensing in the lumen (Amini et al. 2018). The cryoEM structure of TRPY1 at 3.1 Å resolution in a closed state has been determined (Ahmed et al. 2021). The structure, despite containing an evolutionarily conserved and archetypical transmembrane domain, reveals distinctive structural folds for the cytosolic N and C termini compared with other eukaryotic TRP channels. An inhibitory phosphatidylinositol 3-phosphate (PI(3)P) lipid-binding site, along with two Ca2+-binding sites were identified: a cytosolic site, implicated in channel activation, and a vacuolar lumen site, implicated in inhibition. TRPY1 channel modulation by lipids and Ca2+ have been revealed, and the molecular evolution of TRP channels has been suggested (Ahmed et al. 2021). | Eukaryota |
Fungi, Ascomycota | YVC1 or TrpY1 (Yor088w) of Saccharomyces cerevisiae (Q12324) |
1.A.4.4.2 | Yvc1 or TrpY2 of 678 aas and 9 apparent TMSs. It has the same mechanosenstivity as does the S. cereviseae ortholog (Zhou et al. 2005). 45% identical to the latter protein. | Eukaryota |
Fungi, Ascomycota | Yvc1 of Kluyveromyces lactis |
1.A.4.4.3 | Yvc-1, Yvc1 or TrpY3 of 676 aas and 9 apparent TMSs. It has the same mechanosensitive properties of the S. cerevisiae ortholog with TC# 1.A.4.4.1 (Zhou et al. 2005). 57% identical to the latter protein. | Eukaryota |
Fungi, Ascomycota | TrpY3 of Candida albicans |
1.A.4.5.1 | Mg2+-selective channel/kinase-1; Mg2+-ATP-regulated divalent cation channel, LTRPC7, TRPM7, or TRP-PLIK, of 1862 aas. Bradykinin regulates TRPM7 and its downstream target annexin-1 through a phospholipase C-dependent, protein kinase C-dependent and c-Src-dependent pathway that is cAMP-independent; effects are mediated through the bradykinin type 2 receptor (Callera et al. 2009). TRPM7 is a Mg2+ sensor and transducer of signaling pathways during stressful environmental conditions. Its kinase can act on its own in chromatin remodeling processes, but TRPM6's kinase activity regulates intracellular trafficking of TRPM7 and TRPM7-dependent cell growth (Cabezas-Bratesco et al. 2015). Syndecans (proteoglycans) regulate TRPC channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype (Gopal et al. 2015). May be associated with melanocytic tumors. Phenanthrenes, naltriben derivatives, are stimulatory agonist of the TRPM7 channel (Liu et al. 2016). TRP7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells, and its activity is positively regulated by aldosterone and angiotensin II (He et al. 2005). TRPM7 plays an important role in cellular Ca2+, Zn2+ and Mg2+ homeostasis. The protein is abundantly expressed in ameloblasts and, in the absence of TRPM7, dental enamel is hypomineralized. A role of TRPM7 channels in Ca2+ transport during amelogenesis is likely as it serves both as a modulator of Orai-dependent Ca2+ uptake and as an independent Ca2+ entry pathway, sensitive to pH (Kádár et al. 2021). Recurrent hemiplegic migraine attacks are accompanied by intractable hypomagnesemia due to a de novo TRPM7 gene variant (Lei et al. 2022). TrpM6 is palmitoylated on the C terminal side of its Trp domain, and palmitoylation controls ion channel activity of TrpM7; TrpM7 trafficking is also dependant on its palmitoylation (Gao et al. 2022). The TRPM7-A931T mutation, located in the S3 segment at the interface with the transmembrane region S4, generates an omega current that carries Na+ influx under physiological conditions. A931T produces hyperexcitability and a sustained Na+ influx in trigeminal ganglion neurons that may underlie pain in this kindred with trigeminal neuralgia (Gualdani et al. 2022). In addition to ion homeostasis, TrpM7 functions in hypomagnesemia, mitochondrial activities, and inflammation (Liu and Dudley 2023). TRPM7 regulates glioma cells' stemness through STAT3. Guo et al. 2023 showed that FOSL1 (271 aas) a cytoplasmic protein with Uniprot acc# P15407) is a response gene for TRPM7 and serves as an oncogene to promote glioma proliferation and invasion. They also showed that TRPM7 transactivates the FOSL1 gene through STAT3 and enhances glioma stemness (Guo et al. 2023).
| Eukaryota |
Metazoa, Chordata | Channel-kinase-1 (LTRPC7 or TRPM7) of Homo sapiens |
1.A.4.5.2 | Melastatin 1 or transient receptor potential melastatin-1 (TRPM1; LTRPC1, MLSN, MLSN1) (a non-selective, Ca2+-permeable cation channel, implicated in cell death (Wilkinson et al., 2008). Required for dim light vision. Purified TRPM1 is mostly dimeric. The three-dimensional structure of TRPM1 dimers is characterized by a small putative transmembrane domain and a larger domain with a hollow cavity (Agosto et al. 2014). Since dimers are not likely to be functional ion channels, the authors suggested that additional partner subunits participate in forming the transduction channel required for dim light vision and the ON pathway. The N-terminal region of TRPM1 (residues L242 to E344) regulates activity by direct interaction by the S100A1 calcium-binding protein (TC# 8.A.81) (Jirku et al. 2016). TRPM1 is required for synaptic transmission between photoreceptors and the ON subtype of bipolar cells (Agosto et al. 2018). Abnormal levels occur in plasma neuron-derived extracellular vesicles of early schizophrenia and other neurodevelopmental diseases (Goetzl et al. 2022). | Eukaryota |
Metazoa, Chordata | Melastatin 1 of Homo sapiens |
1.A.4.5.3 | MLSN1- and TRP-related MTR1 (TrpM5; LTRPC5) of 1165 aas and 6 TMSs. Associated with the Beckman-Wiedemann Syndrum and causes a predisposition for neoplasia (Prawitt et al. 2000). Involved in taste to bitter, sweet and umami, but not absolutely required for these. Thus, TrpM5-dependent and TrpM5-independent pathways underlie bitter, sweet, and umami tastes (Damak et al. 2006). It plays a role in insulin secretion. It and phospholipase C-β2 colocalize in taste receptor cells of zebrafish (Yoshida et al. 2007). It is a voltage-modulated, Ca2+-activated, monovalent cation (Na+, K+, Cs+) channel (VCAM) that mediates transient membrane depolarization. It is blocked by extracellular acidification but activated by arachidonic acid (Prawitt et al. 2003). The cryoEM structure of TrpM5 in Zebrafish is known (See TC# 1.A.4.5.14). | Eukaryota |
Metazoa, Chordata | MTR1 of Homo sapiens |
1.A.4.5.4 | Intracellular Ca2+-activated nonselective monovalent cation (Na+ and K+) channel (non-permeable to Ca2+), TRPM4b, involved in inherited cardiac arrhythmia syndromes (Amarouch and El Hilaly 2020). It interacts with the TRPC3 channel and suppresses store-operated Ca+ entry (Park et al., 2008). Contributes to the mammalian atrial action potential (Simard et al. 2013). TRPM4 is widely expressed and is associated with a variety of cardiovascular disorders. Autzen et al. 2018 presented two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal the general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening (Autzen et al. 2018). TRPM4 functions as a limiting factor for antigen evoked calcium rise in connective tissue type mast cells, and concurrent translocation of TRPM4 into the plasma membrane is part of this mechanism (Rixecker et al. 2016). Gain-of-function mutations in the TRPM4 activation gate caused progressive symmetric erythrokeratoderma (Wang et al. 2018). Substitution of the 4 residue motif, EPGF, with other amino acids reduced cation binding affinity. Analysis of the human TRPM4 structure indicated that EPGF is located externally to the channel pore (Wei et al. 2022). | Eukaryota |
Metazoa, Chordata | TRPM4b of Homo sapiens |
1.A.4.5.5 | ADP-ribose/NAD/pyrimidine nucleotide-gated Ca2+ permeable, cation nonselective, long transient receptor potential channel-2, LTRPC2; Melastatin 2; TRPM2 (ATP inhibitable). The 3-D structure resembles a swollen bell shaped structure (Maruyama et al., 2007). It can be converted to an anion-selective channel by introducing a lysyl residue in TMS 6 (Kuhn et al., 2007). It transports Ca2+ and Mg2+ with equal facility (Xia et al., 2008). Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate (Csanády and Törocsik, 2009). Protons also regulate activity (Starkus et al., 2010). It is present in the plasma membrane and lysosomes, and plays a role in ROS-induced inflammatory processes and cell death. Melastatin is required for innate immunity against Listeria monocytogenes (Knowles et al., 2011). It functions in pathogen-evoked phagocyte activation, postischemic neuronal apoptosis, and glucose-evoked insulin secretion, by linking these cellular responses to oxidative stress (Tóth and Csanády, 2012). Pore collapse upon prolonged stimulation underlies irreversible inactivation (Tóth and Csanády 2012). TRPM2 is preferentially expressed in cells of the myeloid lineage and modulates signaling pathways converging into NF-kB but does not seem to play a major role in myeloid leukemogenesis. Its loss does not augment the cytotoxicity of standard AML chemotherapeutic agents (Haladyna et al. 2016). TrpM2, expressed in hypothalamic neurons in the brain is a thermosensitive, redox-sensitive channel, required for thermoregulation. It regulates body temperature, limiting fever and driving hypothermia (Song et al. 2016). Tseng et al. 2016 suggested a mechanistic link between TRPM2-mediated Ca2+ influx and p47 phox signaling to induce excess ROS production and TXNIP-mediated NLRP3 inflammasome activation under high gllucose in Type 2 diabetes Mellitus. The cryoEM strcuture reveals a C-terminal NUDT9 homology (NUDT9H) domain responsible for binding ADP-ribose(ADPR) (Wang et al. 2018). Both ADPR and Ca2+ are required for TRPM2 activation, and structures with ADPR and Ca2+ show both intra- and inter-subunit interactions with the N-terminal TRPM homology region (MHR1/2/3) in the apo state, but undergoing conformational changes upon ADPR binding, resulting in rotation of MHR1/2 and disruption of the inter-subunit interaction. Ca2+ binding further engages transmembrane helices and the conserved TRP helix to cause conformational changes at the MHR arm and the lower gating pore to potentiate channel opening (Wang et al. 2018). Consecutive structural rearrangements and channel activation are induced by binding of ADPR in two indispensable locations, and the binding of Ca2+ in the transmembrane domain (Huang et al. 2019). An N-terminal TRPC2 splice variant of 213 aas inhibits calcium influx (Chu et al. 2005). An antogonists of channel function has been identified (Cruz-Torres et al. 2020). A point mutant of TrpM2 (rs93315) has been identified as a risk factor for bipolar disorder (Mahmuda et al. 2020). Two gates orchestrate the opening of human TRPM2 (Rish et al. 2022). Protein kinase C (PKC)-mediated phosphorylation of TRPM2 Thr738 counteracts the effect of cytosolic Ca2+ and elevates the temperature threshold (Kashio et al. 2022). Citronellal suppresses the expression of NHE1 and TPRM2, alleviates oxidative stress-induced mitochondrial damage, and imposes a protective effect on endothelial dysfunction in type 2 diabetes mellitus rats (Yin et al. 2022). Key residues, E829 and R845, are involved in TRPM2 channel gating (Luo et al. 2022). TRPM2 is a prognostic factor correlated with immune infiltration in ovarian cancer (Huang et al. 2023). The TRPM2 ion channel regulates metabolic and thermogenic adaptations in adipose tissue of cold-exposed mice (Benzi et al. 2023). | Eukaryota |
Metazoa, Chordata | LTRPC2 of Homo sapiens |
1.A.4.5.6 | Transient receptor potential cation channel subfamily, member 3, TRPM3. It is subject to muscarinic receptor activation. An alternative ion permeation pathway in TRPM3 allows large inward currents upon hyperpolarization, independently of the central pore. Four residues in S4 (W982, R985, D988 and G991) are determinants of the properties of the alternative ion permeation pathway (Held et al. 2018). TRPM3 is a thermosensitive TRP channel, playing a central role in noxious heat sensation. Volitile anesthetics (VAs) inhibit TRPM3-mediated transmembrane currents. Chloroform, halothane, isoflurane and sevoflurane inhibited both the agonist-induced (pregnenolone sulfate, CIM0216) and heat-activated Ca2+ signals and transmembrane currents in a concentration dependent way in cells overexpressing recombinant TRPM3 (Kelemen et al. 2020). Among the tested VAs, halothane was the most potent blocker (IC50=0.52+/-0.05 mM). VAs exerted their effects on native TRPM3 channels expressed in sensory neurons of the dorsal root ganglia. While volatile anesthetics activate certain sensory neurons independently of TRPM3, they strongly and reversibly inhibit the agonist-induced TRPM3 activity (Kelemen et al. 2020). | Eukaryota |
Metazoa, Chordata | TrpM3 of Homo sapiens (Q9HCF6) |
1.A.4.5.7 | Cold-sensitive (opens with decreasing temperatures; e.g., <22°C) and menthol-sensitive cation-selective channel, transient receptor potential melastatin 8 (TRPM8). TRPM8 is activated by low temperatures and cooling agents such as menthol. It underlies the cold-induced excitation of sensory neurons. Its gating is regulated by voltage and lysophospholipids which induce prolonged channel opening (Vanden Abeele et al., 2006; Bautista et al., 2007; Matta and Ahern, 2007). It can be converted to an anion-selective channel by introducing a lysyl residue in TMS 6 (Kuhn et al., 2007). Gating of TRPM8 channels is activated by cold and chemical agonists in planar lipid bilayers (Zakharian et al., 2010). Residues involved in intra- and intersubunit interactions have been identified, and their link with
channel activity, sensitivity to icilin, menthol and cold, and their impact on channel oligomerization have been measured (Bidaux et al. 2015). Targeting the small isoform of TRPM8 may be useful to fight prostate cancer (Bidaux et al. 2016). The human isoform is 83% identical to the TRPM8 of the collared flycatcher (TC# 1.A.4.5.13), the structure of which has been characterized to 4.1 Å resolution (Yin et al. 2018). Activation of TRPM8 by cooling compounds relies on allosteric actions of
agonist and the membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2). The cryoEM structures of TRPM8 in complex with the
synthetic cooling compound icilin, PIP2, and Ca2+, as well as in complex with the menthol analog WS-12 and PIP2 revealed the binding sites for cooling agonists and PIP2 in TRPM8. PIP2 binds to TRPM8 in two different modes, which illustrate the mechanism of allosteric coupling between PIP2 and agonists. | Eukaryota |
Metazoa, Chordata | TRPM8 of Homo sapiens |
1.A.4.5.8 | The intestinal/renal Mg2+ absorption Mg2+ influx channel, Melastatin6 or TRPM6 (5x higher affinity for Mg2+ than Ca2+; regulated by internal Mg2+) (Voets et al., 2004). TRPM6 and its closest homologue TRPM7 (also a Mg2+-permeable cation channel) assemble to form a functional heterooligomeric channel (Chubanov et al., 2004). Mutations in TRPM6 promotes hypomagnesemia with secondary hypocalcemia (Chubanov et al., 2007). TRPM6 and the closely related TRPM7 are large channel-kinase proteins (Li et al., 2007; Schmitz et al., 2007). TRPM7 also transports protons competitively with Mg2+ and Ca2+ (Numata and Okada, 2008). Intracellular ATP regulates TRPM6 channel activity via its α-kinase domain independently of α-kinase activity (Thébault et al., 2008). Also plays a role in Zn2+ homeostasis and Zn2+- mediated neuronal injury (Inoue et al., 2010). The protein is cleaved to release a chromatin-modifying kinase (Krapivinsky et al. 2014). TRPM7 is a Mg2+ sensor and transducer of signaling pathways under stressful environmental conditions. Its kinase can act on its own in chromatin remodeling processes, but TRPM6's kinase activity regulates intracellular trafficking of TRPM7 and TRPM7-dependent cell growth (Cabezas-Bratesco et al. 2015). Residues involved in cation selectivity have been identified (Topala et al. 2007); reviewed by Schäffers et al. 2018. Calmodulin (CaM) and S100A1 share the same binding domain at the TRPM6 N-terminus although the ligand-binding mechanisms may be different (Zouharova et al. 2019). TRPM7 activation potentiates store-operated Ca2+ entry (SOCE) in enamel cells but requires ORAI (Souza Bomfim et al. 2020). TRPM7 is a cation channel that regulates transmembrane Mg2+ and Ca2+ and is involved in a variety of (patho)physiological processes in the cardiovascular system, contributing to hypertension, cardiac fibrosis, inflammation, and atrial arrhythmias (Liu et al. 2023). TRPM7 is a master regulator of the organismal balance of divalent cations that plays an essential role in embryonic development, immune responses, cell mobility, proliferation, and differentiation. It is implicated in neuronal and cardiovascular disorders, tumor progression and is a drug target. Cryo-EM, functional analysis, and molecular dynamics simulations uncovered two distinct structural mechanisms of TRPM7 activation (Nadezhdin et al. 2023).
| Eukaryota |
Metazoa, Chordata | TRPM6 of Homo sapiens (NP_060132) TRPM7 of Homo sapiens (TC #1.A.4.5.1) |
1.A.4.5.9 | Eukaryota |
Metazoa, Arthropoda | T9.a.14.4.12rpM of Drosophila melanogaster | |
1.A.4.5.10 | TrpCC family member, Gon2. Required for initiation and continuation of postembryonic mitotic cell division of gonadal cells Z1 and Z4. Zygotic expression is necessary for hermaphrodite fertility. Probably a cation channel that functions together with Gem1 (TC#2.A.1.13.22) (Kemp et al. 2009). | Eukaryota |
Metazoa, Nematoda | Gon-2 of Caenorhabditis elegans |
1.A.4.5.12 | TrpM4 of 1213 aas and 6 TMSs. Calcium-activated non selective cation channel that mediates membrane depolarization. While it is activated by increases in intracellular Ca2+, it is impermeable to it. It does mediate transport of monovalent cations (Na+ > K+ > Cs+ > Li+), leading to depolarize the membrane. It thereby plays a central role in the function of cardiomyocytes, neurons from entorhinal cortex, dorsal root and vomeronasal neurons, endocrine pancreas cells, kidney epithelial cells, cochlea hair cells etc. It also participates in T-cell activation by modulating Ca2+ oscillations after T lymphocyte activation (Demion et al. 2007). The structure has been determined by cryo EM both with and without ATP (Guo et al. 2017). It consists of multiple transmembrane and cytosolic domains, which assemble into a three-tiered architecture. The N-terminal nucleotide-binding domain and the C-terminal coiled-coil participate in the tetrameric assembly of the channel; ATP binds at the nucleotide-binding domain to inhibit channel activity. TRPM4 has an exceptionally wide filter although it is only permeable to monovalent cations; filter residue Gln973 is essential in defining monovalent selectivity. The S1-S4 domain and the post-S6 TRP domain form the central gating apparatus that probably houses the Ca2+- and PtdIns(4,5)P2-binding sites (Guo et al. 2017). TRPM4 currents are activated by micromolar concentrations of cytoplasmic Ca2+and progressively desensitized. Zhang et al. 2005 showed that desensitization can be explained by a loss of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) from the channels. TrpM4 interacts directly with glutamate N-methyl-D-aspartate receptor channels (NMDARs) to promote excitotoxicity. Small-molecule interface inhibitors prevent NMDAR-TRPM4 physical coupling and eliminate excitotoxicity. They are therefore neuroprotectants (Yan et al. 2020). Knockdown of the TRPM4 channel alters cardiac electrophysiology and hemodynamics in a sex- and age-dependent manner in mice (Arullampalam et al. 2023). | Eukaryota |
Metazoa, Chordata | TRPM4 of Mus musculus |
1.A.4.5.13 | TRPM8 of the collared flycatcher of 1103 aas. It is 83% identical to the human ortholog. Its structure has been determined to ~4.1 Å resolution by cryo EM (Yin et al. 2018). The structure reveals a three-layered architecture. The amino-terminal domain with a fold distinct among known TRP structures, together with the carboxyl-terminal region, forms a large two-layered cytosolic ring that extensively interacts with the transmembrane channel layer. The structure suggests that the menthol-binding site is located within the voltage-sensor-like domain and thus provides a structural glimpse of the design principle of the molecular transducer for cold and menthol sensation (Yin et al. 2018). TrpM8 is the primary cold and menthol receptor in humans. The structure has been solved for the collared flycatcher at 4.1 Å resolution (6BPQ_A - D (Yin et al. 2017). Transient receptor potential cation channel subfamily M member 8, TrpM8, the primary cold and menthol receptor in humans. The structure has been solved for the collared flycatcher TrpM8 at 4.1 Å resolution (6BPQ_A - D (Yin et al. 2017). Transient receptor potential cation channel subfamily M member 8, TrpM8 is the primary cold and menthol receptor in humans. The structure has been solved for the collared flycatcher at 4.1 Å resolution (6BPQ_A - D (Yin et al. 2017). Cold thermoreceptor neurons detect temperature drops with highly sensitive molecular machinery concentrated in their peripheral free nerve endings. The main molecular entity responsible for cold transduction in these neurons is the thermo-TRP channel TRPM8. Cold, cooling compounds such as menthol, voltage, and osmolality rises activate this polymodal ion channel. Dysregulation of TRPM8 activity underlies several physiopathological conditions, including painful cold hypersensitivity in response to axonal damage, migraine, dry-eye disease, an overactive bladder, and several forms of cancer. TRPM8 could be an attractive target for treating these highly prevalent diseases. Different mutagenesis approaches have allowed the identification of specific amino acids in the cavity comprised of the S1-S4 and TRP domains that determine modulation by chemical ligands (Pertusa et al. 2023). Different studies revealing specific regions within the N- and C-termini and the transmembrane domain contribute to cold-dependent TRPM8 gating. Pertusa et al. 2023 highlight the milestones in the field: cryo-EM structures of TRPM8 that have provided a better comprehension of the 21 years of research on this ion channel, shedding light on the molecular bases underlying its modulation, and promoting the future rational design of novel drugs to selectively regulate abnormal TRPM8 activity under pathophysiological conditions (Pertusa et al. 2023). | Eukaryota |
Metazoa, Chordata | TRP8 of Ficedula albicollis (Collared flycatcher) (Muscicapa albicollis) |
1.A.4.5.14 | TrpM5 of 1165 aas and 8 - 10 TMSs. cryo-EM structures have been solved in an apo closed state, a Ca2+-bound open state, and an antagonist-bound inhibited state. Ruan et al. 2021 defined two novel ligand binding sites: a Ca2+ site (CaICD) in the intracellular domain and an antagonist site in the transmembrane domain (TMD). The CaICD site is unique to TRPM5 and has two roles: modulating the voltage dependence and promoting Ca2+ binding to the CaTMD site, which is conserved throughout TRPM channels. Conformational changes initialized from both Ca2+ sites cooperatively open the ion-conducting pore. The antagonist NDNA wedges into the space between the S1-S4 domain and the pore domain, stabilizing the transmembrane domain in an apo-like closed state (Ruan et al. 2021). It and phospholipase C-β2 colocalize in taste receptor cells (Yoshida et al. 2007). | Eukaryota |
Metazoa, Chordata | TrpM45 of Danio rerio (Zebrafish) (Brachydanio rerio) |
1.A.4.6.1 | Cold-activated cation channel in nociceptive sensory neurons, ANKTM1 (TRPA1; the Wasabi receptor), with lower activation temperature (in the noxious cold range) than TRPM8 (TC #1.A.4.5.7) (Story et al., 2003). Also called TRPA1 (Acc #AAS78661) which translates sound into electric signals in the ear. It sits at the tips of cilia in the inner ear and allows passage of K+ and Ca2+ into the cell. Vibrations in the hair cause the channel to open and close. The frequency of the sound waves generate an electrical signal of the same frequency (Jordt et al., 2004). (Shows 25% identity with α-latrotoxin precursor (TC #1.C.6.3.1.1) in its N-terminal half.) TRPA1 is a polyunsaturated fatty acid sensor in mammals, but not in flies and fish (Motter and Ahern, 2012). TRPA1 is regulated by its N-terminal ankyrin repeat domain (Zayats et al., 2012). Agonistic/antagonistic properties of lactones in food flavors on the sensory ion channels, TRPV1 and TRPA1 have been reviewed (Ogawa et al. 2022). | Eukaryota |
Metazoa, Chordata | ANKTM1 of Mus musculus (Q8BLA8) |
1.A.4.6.2 | Warm-activated thermosensory cation channel of insects, ThermoTRPV, ANKTM1 or TrpA1 (Viswanath et al., 2003). It is required to control activity during the
warm part of the day (Roessingh et al. 2015). The TrpA1(A) transcript spliced with exon10b (TrpA1(A)10b) that is present in a subset of midgut enteroendocrine cells (EECs) is critical for uracil-dependent defecation of microorganisms (Du et al. 2016). TrpA1 is a shear stress mechanosensing channel regulating intestinal stem cell proliferation in Drosophila (Gong et al. 2023). | Eukaryota |
Metazoa, Arthropoda | ANKTM1 of Drosophila melanogaster (1197 aas; Q7Z020) |
1.A.4.6.3 | The nociceptive neuron TRPA1 (Trp-ankyrin 1) (also called the Wasabi Receptor) senses peripheral damage by transmitting pain signals (activated by cold temperatures, pungent compounds and environmental irritants). Noxious compounds also activate through covalent modification of cysteyl residues (Macpherson et al., 2007). TRPA1 is an excitatory, nonselective cation channel implicated in somatosensory function, pain, and neurogenic inflammation. Through covalent modification of cysteine and lysine residues, TRPA1 can be activated by electrophilic compounds, including active ingredients of pungent natural products (e.g., allyl isothiocyanate), environmental irritants (e.g., acrolein), and endogenous ligands (4-hydroxynonenal) (Chen et al., 2008). General anesthetics activate TRPA1 nociceptive ion channels to enhance pain and inflammation (Matta et al., 2008; Leffler et al., 2011). TMS5 is a critical molecular determinant of menthol sensitivity (Xiao et al., 2008) and a variety of inhibitors which are analgesics. Another class of inhibitors are in the thiadiazole structural class of compounds, and they bind to the TRPA1 ankyrin repeat 6 (Tseng et al. 2018). Inhibitors are potential analgesics. The majority of TRPA1 inhibitors interact with the S5 transmembrane helices, forming part of the pore region of the channel. TRPA1 is a component of the nociceptive response to CO2 (Wang et al., 2010). TRPA1 is a polyunsaturated fatty acid sensor in mammals but not in flies and fish (Motter and Ahern, 2012). It is regulated by its N-terminal ankyrin repeat domain (Zayats et al., 2012). Mutations in TrpA1 cause alterred pain perception (Kremeyer et al. 2010). The hop compound, eudesmol, an oxygenated sesquiterpene, activates the channel (Ohara et al. 2015). These channels regulate heat and cold perception, mechanosensitivity, hearing, inflammation, pain, circadian rhythms, chemoreception, and other processes (Laursen et al. 2014). TRPA1 is a polymodal ion channel sensitive to temperature and chemical stimuli, but its resposes are species specific (Laursen et al. 2015). A probable binding site for general anesthetics has been identified (Ton et al. 2017), and specific residues involved in binding of the anesthetic, propofol, are known (Woll et al. 2017). TrpV1 and TrpA1 are inflammatory mediators causing cutaneous chronic itch in several diseases (Xie and Li 2018). TRPA1 is specifically activated by natural products including allyl isothiocyanate (mustard oil), cinnamaldehyde (cinnamon), allicin (garlic) and trans-anethole in Fennel Oil (FO) (Memon et al. 2019). Mutations in TRPA1 result in insensitivity to pain promoting algogens such as capsaicin, acid, and allyl isothiocyanate (AITC), have been documented (Eigenbrod et al. 2019). TRPA1 transduces noxious chemical stimuli into nociceptor electrical excitation and neuropeptide release, leading to pain and neurogenic inflammation. It is regulated by the membrane environment. Startek et al. 2019 found that mouse TRPA1 localizes to cholesterol-rich domains, and that cholesterol depletion decreases channel sensitivity to chemical agonists. Two structural motifs in TMSs 2 and 4 are involved in cholesterol interactions that are necessary for normal agonist sensitivity and plasma membrane localization. TRPA1 is an irritant sensor and a therapeutic target for treating pain, itch, and respiratory diseases. It can be activated by electrophilic compounds such as allyl isothiocyanate (AITC). A class of piperidine carboxamides (PIPCs) are potent noncovalent agonists (Chernov-Rogan et al. 2019). Saikosaponins are channel antogonists (Lee et al. 2019). hTRPA1 is activated by electrophiles such as N-methyl maleimide (NMM). A conformational switch of the protein, possibly associated with activation or desensitization of the ion channel, involves covalent derivatization of several cysteyl and lysyl residues in the transmembrane domain and the proximal N-terminal region as targets for electrophilic activation (Moparthi et al. 2020). Altering expression of the genes encoding Kv1.1, Piezo2, and TRPA1 regulate the response of mechanosensitive muscle nociceptors (Nagaraja et al. 2021). As a polymodal nocisensor, TRPA1 can be activated by thermal and mechanical stimuli as well as a wide range of chemically damaging molecules including small volatile environmental toxicants and endogenous algogenic lipids (Zsidó et al. 2021). After activation by such compounds, the ion channel opens up, allowing calcium influx into the cytosol, inducing signal transduction pathways. Then, calcium influx desensitizes irritant evoked responses and results in an inactive state of the ion channel. It was shown how reversible interactions with binding sites contribute to structural changes of TRPA1, leading to covalent bonding of agonists (Zsidó et al. 2021). The binding site(s) for antagonists have been determined for the TRPA1 ion channel (Gawalska et al. 2022). The hTRPA1 C-terminial domain (CTD) harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively (Moparthi et al. 2022). TRPA1 is a sensor for inflammation and oxidative stress which contribute to the pathophysiology of major depressive disorder (MDD), and TRPA1 channels appear crucial to mediate behavioral impairment induced by chronic corticosterone administration (CCA) (Pereira et al. 2023). Neuronal and non-neuronal TRPA1 are therapeutic targets for pain and headache relief (Iannone et al. 2023). A TRPA1 mutant (R919*), identified in CRAMPT syndrome patients, confers hyperactivity when co-expressed with wild type TRPA1. The R919* mutant co-assembles with WT TRPA1 subunits into heteromeric channels at the plasma membrane. The R919* mutant hyperactivates channels by enhancing agonist sensitivity and calcium permeability, which could account for the observed neuronal hypersensitivity-hyperexcitability symptoms. Possibly, R919* TRPA1 subunits contribute to heteromeric channel sensitization by altering pore architecture and lowering energetic barriers to channel activation (Bali et al. 2023). Platycodonis Radix, a widely consumed herbal food produces a bioactive constituents, platycodins, alleviates LPS-induced lung inflammation through modulation of TRPA1 channels (Yang et al. 2023). The TRPA1 ion channel mediates oxidative stress-related migraine pathogenesis (Fila et al. 2024). | Eukaryota |
Metazoa, Chordata | TRPA1 of Homo sapiens (O75762) |
1.A.4.6.4 | The Pyrexia (Pyx) thermal TRP channel allowing increased tolerance to high temperature (Lee et al., 2005) | Eukaryota |
Metazoa, Arthropoda | Pyx of Drosophila melanogaster (Q9W0T5) |
1.A.4.6.5 | Thermosensitive TPR channel TRPA1 (TrpA-1) of 1211 aas. Detects a temperature drop promoting increased longevity. This requires TPRA1-mediated Ca2+ influx and activation of protein kinase C. Human TRPA1 (TC# 1.A.4.6.3) can functionally substitute for worm TRPA-1 in promoting longevity (Xiao et al. 2013). Also mediates touch sensation. | Eukaryota |
Metazoa, Nematoda | TRPA1 of Caenorhabditis elegans |
1.A.4.6.6 | Water witch (Wtrw) of 986 aas, the "moist" humidity receptor, one of two hygrosensation receptors. These two transient receptor potential channels are needed for sensing humidity. The other is Nanchung (Nan), involved in detecting dry air. Neurons associated with specialized sensory hairs in the third segment of the antenna express these channels, and neurons expressing Wtrw and Nan project to central nervous system regions associated with mechanosensation. Construction of the hygrosensing system with opposing receptors may allow an organism to very sensitively detect changes in environmental humidity (Liu et al. 2007). | Eukaryota |
Metazoa, Arthropoda | WtrW of Drosophila melanogaster |
1.A.4.6.7 | TRP ankyrin 1 (TRPA1 of 1188 aas). It is a homotetrameric, non-selective, cation channel with multiple ankyrin repeats at the N-terminus. The systems from insects to birds are heat activatable, and this activation is dependent on an extracellular Ca2+ binding site near the vestibule surface. Neutralization of acidic amino acids by extracellular Ca2+ seems to be important for heat-evoked activation (Kurganov et al. 2017). | Eukaryota |
Metazoa, Chordata | TRPA1 of Anolis carolinensis (Green anole) (American chameleon) |
1.A.4.7.1 | The mechanically gated hearing and balance ion channel in sensory hair cells of the vertebrate inner ear, NompC (Sidi et al., 2003) | Eukaryota |
Metazoa, Chordata | NompC of Danio rerio (zebrafish) (1614 aas; Q7T1G6) |
1.A.4.7.2 | The sensory ion channel in tactile bristles of insects, NompC. The atomic structure of Drosophila NOMPC has been determined by single-particle electron cryo-microscopy. Structural analyses suggested that the ankyrin repeat domain (29 repeats) of NOMPC resembles a helical spring, suggesting its role of linking mechanical displacement of the cytoskeleton to the opening of the channel (Jin et al. 2017). Compression of the ankyrin chains imparts a rotational torque on the TRP domain, which may result in channel opening (Argudo et al. 2019). | Eukaryota |
Metazoa, Arthropoda | NompC of Drosophila melanogaster (1619 aas; AAF59842) |
1.A.4.7.3 | The pore forming subunit, Trp-4, a mechanosensitive cation/Ca2+ channel. Present in ciliated mechanosensitive neurons; Activation and latency occur in the microsecond range. trp-4 mutations alter ion selectivity (Kang et al., 2010; Xiao and Xu 2009). | Eukaryota |
Metazoa, Nematoda | Trp-4 of Caenorhabditis elegans (Q9GRV5) |
1.A.4.10.1 | TRP cation-slective channel homologue of 1177 aas | Eukaryota |
Viridiplantae, Chlorophyta | TRP channel homologue of Chlamydomonas reinhardtii (Chlamydomonas smithii) |
1.A.4.10.2 | TRP channel homologue of 962 aas | Eukaryota |
Ciliophora | TRP channel homologue of Oxytricha trifallax |
1.A.4.10.3 | TRP channel homologue of 1486 aas | Eukaryota |
Viridiplantae, Chlorophyta | TRP channel homologue of Volvox carteri |